We previously developed the human cell-line activation test (h-CLAT) in vitro skin sensitisation test, based on our reported finding that a 24-hour exposure of THP-1 cells (a human monocytic leukaemia cell line) to sensitisers is sufficient to induce the augmented expression of CD86 and CD54. The aim of this study is to confirm the predictive value of h-CLAT for skin sensitisation activity by employing a larger number of test chemicals. One hundred chemicals were selected, according to their categorisation in the local lymph node assay (LLNA), as being: extreme, strong, moderate and weak sensitisers, and non-sensitisers. The correlation of the h-CLAT results with the LLNA results was 84%. There were some false negatives (e.g. benzoyl peroxide, hexyl cinnamic aldehyde) and some false positives (e.g. 1-bromobutane, diethylphthalate). Eight out of the 9 false negatives (89%) were water-insoluble chemicals. The h-CLAT could positively predict not only extreme and strong sensitisers, but also moderate and weak sensitisers, though the detection rates of weak sensitisers and non-sensitisers were comparatively low. Some sensitisers enhanced both CD86 and CD54 levels, and some enhanced the level of only one of them. The use of the combination of CD86 and CD54 induction as a positive indicator, improved the accuracy of the test. In conclusion, the h-CLAT is expected to be a useful cell-based in vitro method for predicting skin sensitisation potential.
Adult T cell leukemia͞lymphoma (ATLL) has been characterized as one of the most aggressive human neoplasias and its incidence is thought to be caused by both genetic and epigenetic alterations to the host cellular genes of T cells infected with human T cell leukemia virus type I (HTLV-I). A multilobulated nuclear appearance is an important diagnostic marker of ATLL, and we have now identified that the molecular mechanisms underlying these formations occur through microtubule rearrangement via phosphatidylinositol 3-kinase (PI3-kinase) activation by AILIM͞ICOS signaling. We also show that PTEN and͞or SHIP-1, which are PIP3 inositol phosphatases that inhibit the activation of downstream effectors of the PI3-kinase cascade, are disrupted in both ATLL neoplasias and in multilobulated nuclei-forming Jurkat cells. This downregulation of PTEN was found to be essential for the formation of ATLL-type nuclear lobules. Furthermore, PI3-kinase and PTEN activities were observed to be closely associated with cellular proliferation. Thus, our results suggest that alteration of PI3-kinase signaling cascades, as a result of the down-regulation of inositol phosphatases, induces ATLL-type multilobulated nuclear formation and is also associated with the cellular proliferation of malignant T cell leukemias͞lymphomas.activation-inducible lymphocyte immunomediatory molecule͞inducible costimulator ͉ human T cell leukemia virus type I ͉ multilobulated nuclei ͉ PTEN ͉ SHIP
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.