Ordered assembly of the tau protein into filaments characterizes multiple neurodegenerative diseases, which are called tauopathies. We previously reported that by electron cryo-microscopy (cryo-EM), tau filament structures from Alzheimer's disease (1,2), chronic traumatic encephalopathy (CTE) (3), Pick's disease (4) and corticobasal degeneration (CBD) (5) are distinct. Here we show that the structures of tau filaments from typical and atypical progressive supranuclear palsy (PSP), the most common tauopathy after Alzheimer's disease, define a previously unknown, three-layered fold. Moreover, the tau filament structures from globular glial tauopathy (GGT, Types I and II) are similar to those from PSP. The tau filament fold of argyrophilic grain disease (AGD) differs from the above and resembles the four-layered CBD fold. The majority of tau filaments from agingrelated tau astrogliopathy (ARTAG) also have the AGD fold. Surprisingly, tau protofilament structures from inherited cases with mutations +3/+16 in intron 10 of MAPT, the microtubule-associated protein tau gene, are identical to those from AGD, suggesting that a relative overproduction of four-repeat tau can give rise to the AGD fold. Finally, tau filament structures from cases of familial British dementia (FBD) and familial Danish dementia (FDD) are the same as those from Alzheimer's disease and primary age-related tauopathy (PART). These structures provide the basis for a classification of tauopathies that also allows identification of new entities, as we show here for a case diagnosed as PSP, but with abundant spherical 4R tau inclusions in limbic and other brain areas. The structures of the tau fold of this new disease (Limbic-predominant Neuronal inclusion body 4R Tauopathy, LNT) were intermediate between those of GGT and PSP.
Microglia are resident myeloid cells of the central nervous system (CNS), activated in the brains of various neurological diseases. Microglia are ontogenetically and functionally distinct from monocyte-derived macrophages that infiltrate the CNS under pathological conditions. However, a lack of specific markers that distinguish resident microglia from circulating blood-derived macrophages in human brain tissues hampers accurate evaluation of microglial contributions to the human brain pathology. By comparative analysis of five comprehensive microglial transcriptome datasets, we identified an evolutionarily conserved protein TMEM119 as the most promising candidate for human microglial markers. TMEM119 was expressed on immortalized human microglia, in which the expression levels were not elevated by exposure to lipopolysaccharide, IFNγ, IL-4, IL-13 or TGFβ1. Notably, TMEM119 immunoreactivity was expressed exclusively on a subset of Iba1(+) CD68(+) microglia with ramified and amoeboid morphologies in the brains of neurodegenerative diseases, such as Alzheimer's disease (AD), whereas Iba1(+) CD68(+) infiltrating macrophages do not express TMEM119 in demyelinating lesions of multiple sclerosis and necrotic lesions of cerebral infarction. TMEM119 mRNA levels were elevated in AD brains, although the protein levels were not significantly different between AD and non-AD cases by western blot and morphometric analyses. TMEM119-positive microglia did not consistently express polarized markers for M1 (CD80) or M2 (CD163, CD209) in AD brains. These results suggest that TMEM119 serves as a reliable microglial marker that discriminates resident microglia from blood-derived macrophages in the human brain.
We have reported that the ambient gyrus is the site with the greatest accumulation of argyrophilic grains (AGs) and that the degeneration of the ambient gyrus is responsible for dementia with grains. Here we analyzed 1,405 serial autopsy cases from 2 hospitals and detected AGs only in cases older than 56 years of age. The distribution of AGs followed a stereotypic regional pattern. Thus, we propose the following staging paradigm: stage I: AGs restricted to the ambient gyrus and its vicinity; stage II: AGs more apparent in the anterior and posterior medial temporal lobe, including the temporal pole, as well as the subiculum and entorhinal cortex; and stage III: abundant AGs in the septum, insular cortex, and anterior cingulate gyrus, accompanying spongy degeneration of the ambient gyrus. Sixty-three of 65 (96.9%) argyrophilic grain stage III cases without other dementing pathology were classified as 0.5 or higher in the clinical dementia rating. Forty-seven of 50 dementia with grains cases (94%) were stage III and 3 were stage II. No association with apoE genotyping was detected. Our study further confirms that dementia with grains is an age-associated tauopathy with relatively uniform distribution and may independently contribute to cognitive decline in the elderly.
Spinocerebellar ataxia type 31 (SCA31) is an adult-onset autosomal-dominant neurodegenerative disorder showing progressive cerebellar ataxia mainly affecting Purkinje cells. The SCA31 critical region was tracked down to a 900 kb interval in chromosome 16q22.1, where the disease shows a strong founder effect. By performing comprehensive Southern blot analysis and BAC- and fosmid-based sequencing, we isolated two genetic changes segregating with SCA31. One was a single-nucleotide change in an intron of the thymidine kinase 2 gene (TK2). However, this did not appear to affect splicing or expression patterns. The other was an insertion, from 2.5-3.8 kb long, consisting of complex penta-nucleotide repeats including a long (TGGAA)n stretch. In controls, shorter (1.5-2.0 kb) insertions lacking (TGGAA)n were found only rarely. The SCA31 repeat insertion's length inversely correlated with patient age of onset, and an expansion was documented in a single family showing anticipation. The repeat insertion was located in introns of TK2 and BEAN (brain expressed, associated with Nedd4) expressed in the brain and formed RNA foci in the nuclei of patients' Purkinje cells. An electrophoretic mobility-shift assay showed that essential splicing factors, serine/arginine-rich splicing factors SFRS1 and SFRS9, bind to (UGGAA)n in vitro. Because (TGGAA)n is a characteristic sequence of paracentromeric heterochromatin, we speculate that the insertion might have originated from heterochromatin. SCA31 is important because it exemplifies human diseases associated with "inserted" microsatellite repeats that can expand through transmission. Our finding suggests that the ectopic microsatellite repeat, when transcribed, might cause a disease involving the essential splicing factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.