Fecal and blood samples of infants with autism spectrum disorders (ASD) and healthy infants were analyzed to investigate the association of altered gut microbiota and ASD development. 16S rRNA gene-based sequencing found that, unlike those of healthy infants, feces of ASD infants had significantly higher and lower abundance of genera Faecalibacterium and Blautia, respectively. Moreover, DNA microarray analysis of peripheral blood mononuclear cells (PBMC) detected more highly than low expressed genes in ASD infants than in healthy infants. Gene Ontology analysis revealed that differentially expressed genes between ASD and healthy infants were involved in interferon (IFN)-γ and type-I IFN signaling pathways. Finally, strong positive correlations between expression of IFN signaling-associated genes in PBMC and fecal abundance of Faecalibacterium were found. Our results strongly suggested that altered gut microbiota in infants resulted from ASD development and was associated with systemic immunity dysregulation, especially chronic inflammation.
Prebiotic dietary water soluble fiber obtained from partially hydrolyzed guar gum was added to diets of children with autism spectrum disorders who presented constipation symptoms. Supple mentation with partially hydrolyzed guar gum altered gut micro biota and significantly increased the frequency of defecation per week and altered the gut microbiota. In addition, supplementation with partially hydrolyzed guar gum significantly (p<0.05) decreased and tended to decrease (p = 0.07) the concentrations of serum interleukin 1β and tumor necrosis factor α, respectively. More importantly, supplementation with partially hydrolyzed guar gum significantly ameliorated behavioral irritability as per the Aberrant Behavior Checklist, Japanese Version. The present study demon strated that supplementation with partially hydrolyzed guar gum to diets of constipated autism spectrum disorders children helped improve constipation and gut dysbiosis symptoms, which in turn helped attenuate the level of serum inflammation cytokines and behavioral irritability.
Attention-deficit hyperactivity disorder (ADHD) is a common behavioral disorder in children and adolescents and may persist into adulthood. Insufficient nutritional supply of long-chain polyunsaturated fatty acids (LC-PUFAs) and other components including various minerals has been suggested to play a role in the development of ADHD symptoms. This review presents the evidence regarding the role of nutritional PUFA, zinc, iron, and magnesium supplements in the treatment of ADHD with a focus on the critical evaluation of the relevant literature published from 2014 to April 2016. The evaluation of therapeutic nutritional LC-PUFA supplementation in ADHD has shown mixed and inconclusive results and at best marginal beneficial effects. The benefits of PUFAs are much smaller than the effect sizes observed for traditional pharmacological treatments of ADHD. The effectiveness of PUFA supplements in reducing medication dosage has been suggested but needs to be confirmed. Zinc, iron, and magnesium supplementation may reduce ADHD symptoms in children with or at high risk of deficiencies in these minerals. However, convincing evidence in this regard is lacking.
Cholinergic structures in the arm of the cephalopod Octopus vulgaris were studied by immunohistochemistry using specific antisera for two types (common and peripheral) of acetylcholine synthetic enzyme choline acetyltransferase (ChAT): antiserum raised against the rat common type ChAT (cChAT), which is cross-reactive with molluscan cChAT, and antiserum raised against the rat peripheral type ChAT (pChAT), which has been used to delineate peripheral cholinergic structures in vertebrates, but not previously in invertebrates. Western blot analysis of octopus extracts revealed a single pChAT-positive band, suggesting that pChAT antiserum is cross-reactive with an octopus counterpart of rat pChAT. In immunohistochemistry, only neuronal structures of the octopus arm were stained by cChAT and pChAT antisera, although the pattern of distribution clearly differed between the two antisera. cChAT-positive varicose nerve fibers were observed in both the cerebrobrachial tract and neuropil of the axial nerve cord, while pChAT-positive varicose fibers were detected only in the neuropil of the axial nerve cord. After epitope retrieval, pChAT-positive neuronal cells and their processes became visible in all ganglia of the arm, including the axial and intramuscular nerve cords, and in ganglia of suckers. Moreover, pChAT-positive structures also became detectable in nerve fibers connecting the different ganglia, in smooth nerve fibers among muscle layers and dermal connective tissues, and in sensory cells of the suckers. These results suggest that the octopus arm has two types of cholinergic nerves: cChAT-positive nerves from brain ganglia and pChAT-positive nerves that are intrinsic to the arm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.