Cationic antibacterial proteins (CAP) were purified from rabbit granulocytes, and the effects of CAP on lipopolysaccharide (LPS)-induced tissue factor generation by murine peritoneal macrophages and human blood monocytes were studied. CAP were purified from rabbit peritoneal leukocytes by using as an assay the agglutination of erythrocytes coated with Re-LPS. Two proteins with CAP activity, CAP18 (18 kDa) and CAP7 (7 kDa), were isolated by acid extraction, ethanol precipitation, affinity chromatography, gel filtration, and reverse-phase high-pressure liquid chromatography. On the basis of protein sequencing, CAP7 was identified as the C-terminal fragment of CAP18, designated CAP18,06_142 Various forms of LPS (S-LPS, Re-LPS, and lipid A) activate murine macrophages and human blood monocytes to generate tissue factor (tissue thromboplastin). Incubation of LPS for 18 h with partially purified CAP (heparin-Sepharose fraction) inhibited the capacity of LPS to induce tissue factor; however, purified CAP18 inhibited about 75% of the activity of S-LPS after 1 h of incubation. CAP more effectively inhibited S-LPS than Re-LPS or lipid A. Synthetic CAP18106142 inhibited LPS-induced tissue factor generation by murine macrophages. CAP18106442 has greater LPS-binding and LPS-neutralizing activities than CAP18. We hypothesize that CAP18 and the derivative peptide, CAP18106142, bind to LPS and alter the capacity of LPS to initiate disseminated intravascular coagulation. In this regard, CAP may have therapeutic potential for sepsis and endotoxin shock.
For evaluation of physiologically significant organic anions in the colonic environment, 87 samples of normal feces were collected from the rectum of 15 calves less than 60 days old. The calves were fed milk replacer with free access to starter diet and hay. After fecal extraction with water, pH, D- and L-lactate, succinate, and volatile fatty acid (VFA) concentrations were determined. There was wide variation in fecal pH (4.3 to 7.7). Higher lactate concentrations were observed in feces samples with lower pH, and most of these samples were collected during the first 4 weeks of life. Elevated lactate concentrations included both the D- and L-isomers, and the D-isomer comprised approximately 30-50% of total lactate. Elevated succinate concentrations were observed in only 8 fecal samples, while other samples had lower or trace amounts of succinate. Elevated fecal succinate showed no relationship with fecal pH or VFA concentrations. Fecal VFA concentrations were lower in samples collected in the early postnatal stage, but fecal VFA concentrations were not necessarily related to age. We confirmed that fecal D- and L-lactate concentrations increased with a concomitant decrease of VFA in the acidic lumen of the colon, although acidic feces were not necessarily accompanied by elevated concentrations of lactate. In contrast, succinate production was not related to fecal pH or VFA concentrations.
Anti-CF3CO antibodies, monospecific toward trifluoroacetylated proteins (CF3CO-proteins), which are elicited in experimental animals and humans exposed to the anesthetic agent halothane, cross-react with an unknown protein of approximately 52 kDa, constitutively expressed in tissues of experimental animals and humans not previously exposed to the agent. Using anti-CF3CO antibody, the protein(s) of 52 kDa could be immunoprecipitated from solubilized rat heart homogenate. Two-dimensional gel electrophoretic analysis revealed the presence of distinct major (P1, P2) and minor (P3, P4, P5) protein components with apparent molecular masses of 52 kDa. From each of the components P1 and P2, the amino acid sequences of three peptides were determined and found to exhibit 100% identity with the corresponding amino acid sequences of the E2 subunit of the rat 2-oxoglutarate dehydrogenase complex (OGDC). Additionally to the E2 subunit of OGDC, anti-CF3CO antibody also recognized on immunoblots the purified E2 subunit of the branched chain 2-oxoacid dehydrogenase complex (BCOADC) and protein X, a constituent of the pyruvate dehydrogenase complex (PDC), in a manner sensitive to competition by N6-(trifluoroacetyl)-L-lysine (CF3CO-Lys), 6(RS)-lipoic acid, and N6-(6(RS)-lipoyl)-L-lysine (lipoyl-Lys). Furthermore, a discrete population of autoantibodies was identified in sera of patients with halothane hepatitis which could not discriminate between the lipoylated target epitope present on the E2 subunit of OGDC and epitopes on CF3CO-RSA, used as model for CF3CO-proteins. These data suggest that the autoantigenicity of these proteins in halothane hepatitis is based on the molecular mimicry of CF3CO-Lys by lipoic acid, the prosthetic group common to protein X and the E2 subunits of OGDC and BCOADC.
Salivary t(max) can document the solid meal-induced delay in liquid GE.
Background Peripheral artery disease (PAD) is a serious complication in hemodialysis (HD) patients. Low skin perfusion pressure (SPP) is a useful marker for detecting PAD. Malnutrition is an important cause of intractable complications. We examined the relationship between low SPP and various indicators of nutritional status. Methods A total of 120 patients on maintenance HD were enrolled for SPP measurement. SPP was measured at the soles of both feet during HD, and patients were divided into low SPP (L-SPP) and normal SPP (N-SPP) groups by 50 mmHg. The following values were determined by averaging four blood samples taken before SPP measurements every 3 months for one year: hemoglobin, total protein, albumin (Alb), total cholesterol, urea nitrogen, creatinine (Cr), potassium, calcium, phosphate, intact parathyroid hormone, iron (Fe), transferrin saturation (T-SAT), and C-reactive protein (CRP). We calculated the percent Cr production rate, dialysis index (Kt/V), normalized protein catabolic rate (nPCR), geriatric nutritional risk index (GNRI), and estimated salt intake using the required formulas. In addition, the age, body mass index, and presence of diabetes mellitus (DM) were compared between both groups along with all other measurements. Data were expressed as the mean ± standard deviation or median with interquartile range as appropriate. Differences in continuous variables between the two groups were analyzed by Student’s t-test or Wilcoxon’s rank-sum test, as appropriate. Multivariate logistic analysis and receiver operating curve (ROC) analysis were performed for significant variables. The results were expressed as odds ratios with respective 95% confidence intervals (CIs). Results The enrolled patients were 82 men and 38 women, with a mean age of 66.9 ± 13.3 years and HD duration of 4.76 (2.13–12.28) years (median interquartile range). Twenty patients belonged to the L-SPP group, suggesting PAD. Comparison between the L-SPP and N-SPP groups showed significant differences in age, Cr, Fe, T-SAT, CRP, nPCR, GNRI, DM, and estimated salt intake. When the GNRI, estimated salt intake, CRP, and DM were applied as independent variables for multiple logistic regression analysis, the GNRI (odds ratio: 0.857, 95% CI 0.781–0.941, p = 0.001), CRP (2.406, 1.051–3.980, p = 0.035), and DM (9.194, 2.497–33.853, p = 0.001) were found to be significant for L-SPP, and a cutoff level of 92.1 (sensitivity 80%, specificity 72%, AUC: 0.742, 95% CI 0.626–0.858, p = 0.001) in the GNRI obtained by ROC was consistent with the risk index in the elderly presented previously. Conclusions SPP measurement is an essential tool for detecting high-risk PAD in maintenance HD, which is affected by malnutrition, DM, and inflammation. The GNRI is important for the determination of malnutrition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.