Three discrete carbohydrate-appended 2,2'-dipicolylamine ligands were complexed to the {M(CO)(3)}(+) (M = (99m)Tc/Re) core: 2-(bis(2-pyridinylmethyl)amino)ethyl-beta-d-glucopyranoside (L(1)()), 2-(bis(2-pyridinylmethyl)amino)ethyl-beta-D-xylopyranoside (L(2)()), and 2-(bis(2-pyridinylmethyl)amino)ethyl-alpha-d-mannopyranoside (L(3)). An ethylene spacer is used to separate the carbohydrate moiety and the dipicolylamine (DPA) function in all three ligands. The Re complexes [Re(L(1-3))(CO)(3)]Br were characterized by (1)H and (13)C 1D/2D NMR spectroscopies, which confirmed the pendant nature of the carbohydrate moieties in solution. NMR measurements also established the long-range asymmetric effect of the carbohydrate functions on the chelating portion of the ligand. One analogue, [Re(L(1))(CO)(3)]Cl, was characterized in the solid state by X-ray crystallography. Further characterization was provided by IR spectroscopy, elemental analysis, conductivity, and mass spectrometry. Radiolabeling of L(1)-L(3) with [(99m)Tc(H(2)O)(3)(CO)(3)](+) afforded high yield compounds of identical character to the Re analogues. The radiolabeled compounds were found to be stable toward ligand exchange in the presence of a large excess of either cysteine or histidine over a 24-h period.
A pair of copper(II) complexes 1 and 2 exhibit an enantiomeric chiral center at the oxygen atom that coordinates to the metal center. The configurations of the oxygen atom chirality and the chelate ring conformation are simply controlled by protected/free hydroxyl groups of the sugar moiety, yielding mirror image CD spectra. In this system, repulsive and attractive forces are used to regulate chirality on the copper-coordinated oxygen atom both in the solid state and in solution.
Six sugar-pendant 2,2'-dipicolylamine (DPA) ligands (L1-3 and L'1-3) have been prepared. OH-protected and unprotected D-glucose, D-mannose, and D-xylose were attached to a DPA moiety via an O-glycoside linkage. X-ray crystallography of the copper(II) complexes (1-5) with these ligands revealed that the anomeric oxygen atom is coordinated to the metal center in the solid state, generating a chiral center at the oxygen atom. The CD spectra of these copper complexes in methanol or aqueous solution exhibit Cotton effects in the d-d transition region, which indicates that the ether oxygen atoms remain coordinated to the metal center and the oxygen-atom chirality is preserved even in solution. For complexes 1 and 2, the inverted oxygen-atom chirality and chelate-ring conformation in the solid state are well correlated with the mirror-image CD spectra in methanol solution. The concomitant inversion of the asymmetric configuration around the copper center was also observed in a methanol solution of complex 3 and a pyridine solution of complex 2. The square-pyramidal/octahedral copper(II) centers also exhibited characteristic absorption and CD spectra.
Carotenoids are essential pigments in natural photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This process is an example of singlet-singlet energy transfer and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. In this case, triplet-triplet energy transfer from (bacterio-)chlorophyll to carotenoid plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role, namely the structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined to provide a basis from which to describe the photochemistry of carotenoids, which underlies most of their important functions in photosynthesis. Then, the possibility to utilize the functions of carotenoids in artificial photosynthetic light-harvesting systems will be discussed. Some examples of the model systems are introduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.