Perceptual learning is regarded as a manifestation of experience-dependent plasticity in the sensory systems, yet the underlying neural mechanisms remain unclear. We measured the dynamics of performance on a visual task and brain activation in the human primary visual cortex (V1) across the time course of perceptual learning. Within the first few weeks of training, brain activation in a V1 subregion corresponding to the trained visual field quadrant and task performance both increased. However, while performance levels then saturated and were maintained at a constant level, brain activation in the corresponding areas decreased to the level observed before training. These findings indicate that there are distinct temporal phases in the time course of perceptual learning, related to differential dynamics of BOLD activity in visual cortex.
SUMMARY Visual perceptual learning is defined as performance enhancement on a sensory task and is distinguished from other types of learning and memory in that it is highly specific for location of the trained stimulus. The location specificity has been shown to be paralleled by changes in neural activity in V1 or V4 of monkeys [1, 2] and enhancement in functional magnetic resonance imaging (fMRI) signal in the trained region of the primary visual cortex (V1) [3–5] after visual training. Although recently the role of sleep in strengthening visual perceptual learning has attracted much attention, its underlying neural mechanism has yet to be clarified. Here, for the first time, fMRI activation of early visual cortex was measured and compared during sleep with and without preceding visual perceptual learning training. The fMRI measurement was conducted concurrently with polysomnogram, which indicates a subject’s sleep/wake status. As a result of predetermined region-of-interest (ROI) analysis of the human primary cortex (V1), activation enhancement during non rapid eye movement sleep after training was observed specifically in the trained region of V1. Furthermore, improvement of task-performance measured subsequently to the post-training sleep session was significantly correlated with the amount of the trained-region-specific fMRI activation in V1 during sleep. These results suggest that as far as V1 is concerned, only the trained region is involved in improving task performance after sleep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.