It is believed that Ag in immune complexes (ICs) on follicular dendritic cells (FDCs) selects high affinity B cells and promotes affinity maturation. However, selection has been documented in the absence of readily detectable ICs on FDCs, suggesting that FDC-ICs may not be important. These results prompted experiments to test the hypothesis that IC-bearing murine FDCs can promote high affinity IgG responses by selecting B cells after stimulating naive IgM+ cells to mature and class switch. Coculturing naive λ+ B cells, FDCs, (4-hydroxy-3-nitrophenyl)acetyl-chicken γ-globulin (CGG) + anti-CGG ICs, and CGG-primed T cells resulted in FDC-lymphocyte clusters and production of anti-4-hydroxy-5-iodo-3-nitrophenyl acetyl. Class switching was indicated by a shift from IgM to IgG, and affinity maturation was indicated by a change from mostly low affinity IgM and IgG in the first week to virtually all high affinity IgG anti-4-hydroxy-5-iodo-3-nitrophenyl acetyl in the second week. Class switching and affinity maturation were easily detectable in the presence of FDCs bearing appropriate ICs, but not in the absence of FDCs. Free Ag plus FDCs resulted in low affinity IgG, but affinity maturation was only apparent when FDCs bore ICs. Class switching is activation-induced cytidine deaminase (AID) dependent, and blocking FDC-CD21 ligand-B cell CD21 interactions inhibited FDC-IC-mediated enhancement of AID production and the IgG response. In short, these data support the concept that ICs on FDCs can promote AID production, class switching, and maturation of naive IgM+ B cells, and further suggest that the IC-bearing FDCs help select high affinity B cells that produce high affinity IgG.
Aging is associated with reduced trapping of Ag in the form of in immune complexes (ICs) by follicular dendritic cells (FDCs). We postulated that this defect was due to altered regulation of IC trapping receptors. The level of FDC-M1, complement receptors 1 and 2, FcγRII, and FDC-M2 on FDCs was immunohistochemically quantitated in draining lymph nodes of actively immunized mice for 10 days after Ag challenge. Initially, FDC FcγRII levels were similar but by day 3 a drastic reduction in FDC-FcγRII expression was apparent in old mice. FDC-M2 labeling, reflecting IC trapping, was also reduced and correlated with a dramatic reduction in germinal center (GC) B cells as indicated by reduced GC size and number. Nevertheless, labeling of FDC reticula with FDC-M1 and anti-complement receptors 1 and 2 was preserved, indicating that FDCs were present. FDCs in active GCs normally express high levels of FcRs that are thought to bind Fc portions of Abs in ICs and minimize their binding to FcRs on B cells. Thus, cross-linking of B cell receptor and FcR via IC is minimized, thereby reducing signaling via the immunoreceptor tyrosine-based inhibition motif. Old FDCs taken at day 3, when they lack FcγRII, were incapable of preventing immunoreceptor tyrosine-based inhibition motif signaling in wild-type B cells but old FDCs stimulated B cells from FcγRIIB−/− mice to produce near normal levels of specific Ab. The present data support the concept that FcR are regulated abnormally on old FDCs. This abnormality correlates with a reduced IC retention and with a reduced capacity of FDCs to present ICs in a way that will activate GC B cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.