Recent genomic and ribonomic research reveals that our genome produces a stupendous amount of non-coding RNAs (ncRNAs), including antisense RNAs, and that many genes contain other gene(s) in their introns. Since ncRNAs either regulate the transcription, translation or stability of mRNAs or directly exert cellular functions, they should be regarded as the fourth category of RNAs, after ribosomal, messenger and transfer RNAs. These and other research advances challenge the current concept of gene and raise a question as to how we should redefine gene. We can either consider each tiny part of the classically-defined gene, such as each mRNA variant, as a “gene”, or, alternatively and oppositely, regard a whole genomic locus as a “gene” that may contain intron-embedded genes and produce different types of RNAs and proteins. Each of the two ways to redefine gene not only has its strengths and weaknesses but also has its particular concern on the methodology for the determination of the gene's function: Ectopic expression of complementary DNA (cDNA) in cells has in the past decades provided us with great deal of detail about the functions of individual mRNA variants, and will make the data less conflicting with each other if just a small part of a classically-defined gene is considered as a “gene”. On the other hand, genomic DNA (gDNA) will better help us in understanding the collective function of a genomic locus. In our opinion, we need to be more cautious in the use of cDNA and in the explanation of data resulting from cDNA, and, instead, should make delivery of gDNA into cells routine in determination of genes' functions, although this demands some technology renovation.
Early detection of these risk factors, strict surveillance protocols by Doppler ultrasound and prophylactic anticoagulation for recipients at risk might be determined prospectively.
Gender differences in the incidence of cardiovascular disease have been related to plasma estrogen levels; however, the role of vascular estrogen receptor (ER) subtypes in these sex differences is less clear. We tested whether the gender differences in vascular smooth muscle (VSM) function reflect differential expression/activity of ERα, ERβ and the newly-identified GPR30. Single aortic VSM cells (VSMCs) were freshly isolated from male and female Sprague-Dawley rats, and their contraction to phenylephrine (PHE, 10-5 M), AngII (10-7 M) and membrane-depolarization by KCl (51 mM) was measured in the absence or presence of 10-6 M 17β-estradiol (E2, stimulant of most ERs), PPT (ERα agonist), DPN (ERβ agonist), and ICI 182,780 (an ERα/ERβ antagonist with GPR30 agonistic properties). The cells were fixed and fluorescently labeled with ERα, ERβ or GPR30 antibody, and the subcellular distribution of ERs was examined using digital imaging microscopy. The mRNA expression and protein amount of aortic ER subtypes was examined using RT-PCR and Western blots. PHE, AngII, and KCl caused less contraction in VSMCs of females than males. Pretreatment of VSMCs with E2 reduced PHE-, AngII- and KCl-induced contraction in both males and females. PPT caused similar inhibition of PHE-, AngII- and KCl-induced contraction as E2, suggesting a role of ERα. DPN mainly inhibited PHE and KCl contraction, suggesting an interaction between ERβ and Ca2+ channels. ICI 182,780 did not reduce aortic VSMC contraction, suggesting little role for GPR30. RT-PCR and Western blots revealed greater expression of ERα and ERβ in VSMCs of females than males, but similar amounts of GPR30. The total immunofluorescence signal for ERα and ERβ was greater in VSMCs of females than males, and was largely localized in the nucleus. GPR30 fluorescence was similar in VSMCs of males and females, and was mainly in the cytosol. In PPT treated cells, nuclear ERα signal was enhanced. DPN did not affect the distribution of ERβ, and ICI 182,780 did not significantly increase GPR30 in the cell surface. Thus, ER subtypes demonstrate similar responsiveness to specific agonists in VSMCs of male and female rats. The reduced contraction in VSMCs of females could be due to gender-related increase in the expression of ERα and ERβ.
A number of novel anticancer drugs have been developed in recent years. However, the mortality of cancer patients remains high because of the emergence of drug resistance. It was reported that drug resistance might involved in changes in gene expression without changing genotypes, which is similar to epigenetic modification. Some studies indicated that targeting histone methyltransferase can reverse drug resistance. Hence, the use of histone methyltransferase inhibitors or histone demethylase inhibitors opens new therapeutic approaches for cancer treatment. While the relationship between histone methyltransferase and tumor resistance has been determined, there is a lack of updated review on the association between them. In this review, we summarized the mechanisms of histone methyltransferases in cancer drug resistance and the therapeutic strategies of targeting histone methyltransferase to reverse drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.