Vehicle platooning has been a major research topic in recent years because of its ability to reduce fuel consumption, enhance road traffic safety and utilize the road more efficiently. A practical and applicable platoon merging maneuver is the key to forming new platoons while ensuring safety and economy. This study proposes merging strategies that consider both safe space and acceleration limitations for two adjacent platoons comprising connected autonomous vehicles (CAVs). The distributed model predictive control (DMPC) algorithm is adopted to design a DMPC 2 controller, which includes 1) a space-making DMPC controller that controls the vehicles in one platoon, i.e. the target platoon, to make space for the vehicles in a second platoon, i.e. the merge platoon, and 2) a DMPC platoon controller that controls the merging vehicles to fill in the space in the target platoon. The former considers the explicit acceleration constraint of the vehicle, making the generated trajectory more feasible, and the latter controls the merge platoon to perform an overall mergence, which reduces the complexity of the merge problem. The low computation load of DMPC makes online computing and real-time control possible in practical scenarios. A simulation study is conducted with different scenarios and parameters, and the results demonstrate that the proposed strategy is more feasible and efficient, and less time-consuming than the existing state-of-the-art methods and have the advantages of taking safety distance and control input constraints into account. INDEX TERMS Platoons merging, space making, distributed model predictive control, connected and autonomous vehicles. I. INTRODUCTION Research on the platooning of connected autonomous vehicles (CAVs) is of great significance in the field of intelligent transportation systems since it has the potential to enhance road safety, improve traffic efficiency, and reduce fuel consumption [1]-[4]. PATH has a long-term commitment to platoon control research, in which many topics are discussed, such as control architecture, control methods, and string stability [5]. Many other related issues The associate editor coordinating the review of this manuscript and approving it for publication was Junhui Zhao.
Connected and automated vehicles (CAVs) have attracted much attention of researchers because of its potential to improve both transportation network efficiency and safety through control algorithms and reduce fuel consumption. However, vehicle merging at intersection is one of the main factors that lead to congestion and extra fuel consumption. In this paper, we focused on the scenario of on-ramp merging of CAVs, proposed a centralized approach based on game theory to control the process of on-ramp merging for all agents without any collisions, and optimized the overall fuel consumption and total travel time. For the framework of the game, benefit, loss, and rules are three basic components, and in our model, benefit is the priority of passing the merging point, represented via the merging sequence (MS), loss is the cost of fuel consumption and the total travel time, and the game rules are designed in accordance with traffic density, fairness, and wholeness. Each rule has a different degree of importance, and to get the optimal weight of each rule, we formulate the problem as a double-objective optimization problem and obtain the results by searching the feasible Pareto solutions. As to the assignment of merging sequence, we evaluate each competitor from three aspects by giving scores and multiplying the corresponding weight and the agent with the higher score gets comparatively smaller MS, i.e., the priority of passing the intersection. The simulations and comparisons are conducted to demonstrate the effectiveness of the proposed method. Moreover, the proposed method improved the fuel economy and saved the travel time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.