Sirtuin 1 (Sirt1), a protein deacetylase, is a novel target for bone metabolism. To investigate whether overexpression of Sirt1 in mandibular mesenchymal stem cells (M-MSCs) increased alveolar bone mass in vivo, we generated Sirt1 transgenic mice (Sirt1 TG ), with Sirt1 gene expression driven by the Prx1 gene, which represents the mesenchymal lineage. Our results demonstrated that overexpression of Sirt1 in M-MSCs increased the alveolar bone volume in 1-month-old, 9-month-old, and 18-month-old Sirt1 TG mice compared with age-matched wild-type (WT) mice, and in ovariectomized Sirt1 TG mice compared with ovariectomized WT mice by stimulating M-MSC differentiation into osteoblasts. Treatment with resveratrol, a Sirt1 activator, increased Sirt1 binding with Bmi1 and reduced Bmi1 acetylation in a dose-dependent manner demonstrated in M-MSC cultures. Both treatment with resveratrol in M-MSC cultures and overexpressed Sirt1 in M-MSCs ex vivo cultures increased nuclear translocation of Bmi1. Furthermore, we demonstrated that deletion of Bmi1 blocked the increased alveolar bone volume in Sirt1 TG mice. The Sirt1 activator resveratrol inhibited human MSC senescence and promoted their differentiation into osteoblasts, which were associated with upregulating the expression levels of Sirt1 and nuclear translocation of Bmi1. The present results suggested that Sirt1 promotes MSC proliferation and osteogenic differentiation, inhibits MSC senescence to increase alveolar bone volume by promoting the deacetylation and nuclear translocation of Bmi1. Thus, our study elucidated the mechanism by which Sirt1 increases alveolar bone mass, and these findings are important for the clinical application of the Sirt1 activator resveratrol for the promotion of alveolar bone formation and prevention of alveolar bone loss.
Bone tissues are dynamically reconstructed during the entire life cycle phase, which is an exquisitely regulated process controlled by intracellular and intercellular signals transmitted through physicochemical and biochemical stimulation. Recently, the role of electrical activity in promoting bone regeneration has attracted great attention, making the design, fabrication, and selection of bioelectric bio-reactive materials a focus. Under specific conditions, piezoelectric, photoelectric, magnetoelectric, acoustoelectric, and thermoelectric materials can generate bioelectric signals similar to those of natural tissues and stimulate osteogenesis-related signaling pathways to enhance the regeneration of bone defects, which can be used for designing novel smart biological materials for engineering tissue regeneration. However, literature summarizing studies relevant to bioelectric materials for bone regeneration is rare to our knowledge. Consequently, this review is mainly focused on the biological mechanism of electrical stimulation in the regeneration of bone defects, the current state and future prospects of piezoelectric materials, and other bioelectric active materials suitable for bone tissue engineering in recent studies, aiming to provide a theoretical basis for novel clinical treatment strategies for bone defects.
Aims: His-Purkinje system pacing has been demonstrated as a synchronized ventricular pacing strategy via pacing His-Purkinje system directly, which can decrease the incidence of adverse cardiac structure alteration compared with right ventricular pacing (RVP). The purpose of this meta-analysis was to compare the effects of His-Purkinje system pacing and RVP in patients with bradycardia and cardiac conduction dysfunction. Methods: PubMed, Embase, Cochrane Library, and Web of Science were systematically searched from the establishment of databases up to 15 December 2019. Studies on long-term clinical outcomes of His-Purkinje system pacing and RVP were included. Chronic paced QRS duration, chronic pacing threshold, left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), all-cause mortality, and heart failure hospitalization were collected for meta-analysis. Results: A total of 13 studies comprising 2348 patients were included in this metaanalysis. Compared with RVP group, patients receiving His-Purkinje system pacing showed improvement of LVEF (mean difference [MD], 5.65; 95% confidence interval [CI], 4.38-6.92), shorter chronic paced QRS duration (MD, − 39.29; 95% CI, − 41.90 to − 36.68), higher pacing threshold (MD, 0.8; 95% CI, 0.71-0.89) and lower risk of heart failure hospitalization (odds ratio [OR], 0.65; 95% CI, 0.44-0.96) during the follow-up. However, no statistical difference existed in LVEDV, LVESV and all-cause mortality between the two groups.Conclusion: Our meta-analysis suggests that His-bundle pacing is more suitable for the treatment of patients with bradycardia and cardiac conduction dysfunction. K E Y W O R D S clinical outcomes, His bundle pacing, His-Purkinje system pacing, left bundle branch pacing, meta-analysis Jin-Yu Sun, Ye-Qin Sha, and Qing-Yang Sun contributed equally to this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.