Chronic pain is maintained in part by central sensitization, a phenomenon of synaptic plasticity, and increased neuronal responsiveness in central pain pathways after painful insults. Accumulating evidence suggests that central sensitization is also driven by neuroinflammation in the peripheral and central nervous system. A characteristic feature of neuroinflammation is the activation of glial cells, such as microglia and astrocytes, in the spinal cord and brain, leading to the release of proinflammatory cytokines and chemokines. Recent studies suggest that central cytokines and chemokines are powerful neuromodulators and play a sufficient role in inducing hyperalgesia and allodynia after central nervous system administration. Sustained increase of cytokines and chemokines in the central nervous system also promotes chronic widespread pain that affects multiple body sites. Thus, neuroinflammation drives widespread chronic pain via central sensitization. We also discuss sex-dependent glial/immune signaling in chronic pain and new therapeutic approaches that control neuroinflammation for the resolution of chronic pain.
Inflammation is the body’s response to injury and infection, involving a complex biological response of the somatosensory, immune, autonomic, and vascular systems. Inflammatory mediators such as prostaglandin, pro-inflammatory cytokines, and chemokines induce pain via direct activation of nociceptors, the primary sensory neurons that detect noxious stimuli. Neurogenic inflammation is triggered by nerve activation and results in neuropeptide release and rapid plasma extravasation and edema, contributing to pain conditions such as headache. Neuroinflammation is a localized inflammation in the peripheral nervous system (PNS) and central nervous system (CNS). A characteristic feature of neuroinflammation is the activation of glial cells in dorsal root ganglia, spinal cord, and brain which leads to the production of proinflammatory cytokines and chemokines in the PNS and CNS that drives peripheral sensitization and central sensitization. Here, we discuss the distinct roles of inflammation, neurogenic inflammation, and neuroinflammation in the regulation of different types of pain conditions, with a special focus on neuroinflammation in postoperative pain and opioid-induced hyperalgesia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.