The synergistic control of multipollutants is the frontier of environmental catalysis. This research is in the infancy stage, and many uncertainties still remain. Herein, we investigated the reaction characteristics of synergistic elimination of NO x and chloroaromatics on a commercial V2O5–WO3/TiO2 catalyst. The reaction byproducts were qualitatively and quantitatively analyzed, and their origins were clarified. In particular, the origins of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from the synergistic reaction with or without SO2 were first explored; this is crucial for assessing the environmental risk by applying such a synergistic system. Experimental results indicate that during the synergistic reaction, the V2O5–WO3/TiO2 catalyst was deactivated at 200 and 250 °C, whereas the 300 °C was sufficient to durably convert the NO and chlorobenzene at the turnover frequency (TOF) of 7.23 × 10–4 and 1.32 × 10–4 s–1, respectively. A range of aromatics, alkenes, and alkanes, particularly their chlorinated congeners, were observed in the off-gases and on the catalyst surface, where those of 3-chlorobenzonitrile, 4-chloro-2-nitrophenol, and inorganic CS2 were first discovered. In the time-on-stream test at 250 °C, the PCDD/Fs collected from the off-gases was measured at 0.0514 ng I-TEQ Nm–3, but the most toxic dioxins congener, 2,3,7,8-TCDD, was not observed. The alkalinity of selective catalytic reduction reaction likely facilitated the chlorophenol formation, which eventually promoted PCDD/F generation. The SO2 was found to benefit polychlorinated byproduct generation, but the addition of which distinctly inhibited PCDD/F formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.