Background: Vitiligo is an autoimmune disease with varying pathological features. Activation of the CCL20-CCR6 axis plays an important role in chronic inflammatory diseases. However, whether CCL20-CCR6 and Th1/17 cells are indicative of active vitiligo is unclear. Objective: To investigate the potential role of CCL20 and the involvement of Th1/17 and Tc1/17 cells in the mechanism in vitiligo. Methods: One hundred patients with vitiligo, and 20 healthy controls were included. The serum and blister fluid IL-17, IFN-g, CCL20, and CXCL10 were studied using enzyme-linked immunosorbent assays. The numbers of Th1/17 cells and Tc1/17 cells in circulation were quantified using flow cytometry. CCR6 mRNA in peripheral blood mononuclear cells (PBMCs) was analyzed by real-time polymerase chain reaction and the protein level was confirmed by western blotting. CCR6 and CCL20 expression in lesions was analyzed by immunohistochemistry. Results: The serum CCL20 level was significantly elevated in patients with vitiligo. The level of serum CCL20 was higher in active than in the stable stage, which correlated positively with the Vitiligo European Task Force spreading score and the Vitiligo Area Scoring Index score. Patients with active vitiligo had elevated numbers of circulating Th1/17 cells and Tc1/17 cells, and upregulated expression of CCR6 in PBMCs and lesions. After effective treatment, the level of CCL20 in sera and blister fluid was significantly decreased, as were the numbers of circulating Th1/17 cells and Tc1/17 cells. Conclusion: CCL20 might be a vital biomarker of active vitiligo, and circulating Th1/17 and Tc1/17 cells are involved in the pathogenesis of vitiligo.
IMPORTANCEIt is necessary to determine whether established clinical markers of vitiligo are associated with disease progression, severity, and patient prognosis.OBJECTIVE To evaluate the utility of trichrome sign, confetti-like depigmentation, and Koebner phenomenon in assessing disease progression, severity, and prognosis in patients with vitiligo. DESIGN, SETTING, AND PARTICIPANTSIn this prospective cohort study, 425 patients with vitiligo were recruited from the outpatient department of
It is already accepted that telocytes (TCs) represent a new type of interstitial cells in human dermis. In normal skin, TCs have particular spatial relations with different dermal structures such as blood vessels, hair follicles, arrector pili muscles or segments of sebaceous and/or eccrine sweat glands. The distribution and the density of TCs is affected in various skin pathological conditions. Previous studies mentioned the particular (ultra)structure of TCs and also their immunophenotype, miR imprint or proteome, genome or secretome features. As fibroblast is the most common intersitital cell (also in human dermis), a dedicated comparison between human skin TCs and fibroblasts (Fbs) was required to be performed. In this study, using different techniques, we document several points of difference between human dermis TCs and Fbs. By transmission electron microscopy (TEM) and scanning electron microscopy (SEM), we demonstrated TCs with their hallmark cellular prolongations – telopodes. Thus, we showed their ultrastructural distinctiveness from Fbs. By RayBio Human Cytokine Antibody Array V analyses performed on the supernatant from separately cultured TCs and Fbs, we detected the cytokine profile of both cell types, individually. Two of 79 detected cytokines – epithelial-derived neutrophil-activating peptide 78 and granulocyte chemotactic protein-2 – were 1.5 times higher in the supernatant of TCs (comparing with Fbs). On the other hand, 37 cytokines were at least 1.5 higher in Fbs supernatant (comparing with TCs), and among them six cytokines – interleukin 5, monocyte chemotactic protein-3 (MCP-3), MCP-4, macrophage inflammatory protein-3, angiogenin, thrombopoietin – being 9.5 times higher (results also confirmed by ELISA testing). In summary, using different techniques, we showed that human dermal TCs and Fbs are different in terms of ultrastructure and cytokine profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.