Frequency analysis of precipitation extremes is significant for the selection of design rainfalls, which are essential inputs for the design of water infrastructure projects, especially when the climate has changed. Therefore, the objective of this study was to propose a framework for more reasonably analysing the frequency of extreme rainfalls. The proposed framework consists of a maximum likelihood estimate (MLE) method for analysing the parameter trends, a hydrological variation diagnosis system to determine abrupt change times, generalized extreme value (GEV) and generalized Pareto distribution (GPD) models for frequency analysis of precipitation extremes, and an ensemble‐methods approach for choosing the most appropriate distributions. The methodology was successfully implemented using a 52‐year time series (1963–2014) of rainfall data recorded by eight rain gauges in Chengbi River basin (south China). The results show that the rainfall series mutated in 1993 and that the entire data set could be divided into two slices (1963–1992 and 1993–2014). Climate change was found to have some impacts on the precipitation extremes: the extreme rainfall value and the parameters of GEV and GPD were variable in the context of climate change. Furthermore, the GPD distribution model outperformed the GEV distribution model.
A reasonable flood season delineation can effectively implement staged reservoir scheduling and improve water resource efficiency. Therefore, this study is aimed at analyzing the flood period segmentation and optimizing the staged flood limit water levels (FLWLs) for a multi-purpose reservoir, the Longtan Reservoir, China. The rainfall seasonality index (SIP) and the runoff seasonality index (SIR) are used to evaluate the feasibility and rationality of the flood period staging. The fractal method is then used to segment the flood season. Finally, the design flood is carried out to optimize the staged FLWLs. The results show that the SI is an effective indicator for judging the feasibility and verifying the rationality of flood segmentation. The flood period can be segmented into the pre-flood season (12 April–29 May), the main flood season (30 May–3 September), and the post-flood season (4 September–9 November). The FLWLs in the main flood and the post-flood season can be raised by 2.05 m and 3.45 m, and the effective reservoir capacity is increased by 5.810 billion m3 and 6.337 billion m3, according to the results of the flood season division.
Frequent flood disasters have caused serious damage to karst areas with insufficient measured rainfall data, and the analysis of the applicability of satellite rainfall data in runoff simulation is helpful to the local water management. Therefore, the purpose of this study is to analyze the accuracy of IMERG satellite rainfall data and apply it to long-term runoff simulations in a karst area—the Xiajia River basin, China. First, R (correlation coefficient) and POD (probability of detection) are applied to analyze the accuracy of the IMERG data, and the SWAT model is used for runoff simulation. The results show that the accuracy of the original IMERG data is poor (R range from 0.412 to 0.884 and POD range from 47.33 to 100), and the simulation results are “Unsatisfactory” (NSE (Nash-Sutcliffe efficiency coefficient) ranged from 0.17 to 0.32 and RSR (root mean square standard deviation ratio) ranged from 0.81 to 0.92). Therefore, the GDA correction method is used to correct the original IMERG data, and then the accuracy analysis and runoff simulation are carried out. The results show that the accuracy of the corrected IMERG data is better than that of the original data (R range from 0.886 to 0.987 and POD range from 94.08 to 100), and the simulation results of the corrected IMERG data are “Satisfactory” (NSE is over 0.55 and RSR is approximately 0.65). Therefore, the corrected data have a certain applicability in long-term continuous runoff simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.