The purpose of this work is the development of a difference scheme for the solution of convection-diffusion problem at high Peclet numbers (Pe>2). In accordance with this purpose the following problems were solved: difference scheme for convection is built, comparison with the existing schemes is carried out; conditions for stability of the proposed difference scheme are obtained. Solutions of the convection-diffusion equation on the basis of the proposed difference scheme at various Peclet numbers are obtained.
The article considers a three-dimensional mathematical model of population dynamics based on a system of non-stationary parabolic advection-diffusion-reaction equations with lower derivatives describing the advective motion of the aquatic environment and non-linear source functions. In contrast to the previous authors’ works devoted to the description of this model and its numerical implementation, this article presents the results of an analytical study of the initial-boundary value problem corresponding to this model. For these purposes, the original initial-boundary value problem is linearized on a single time grid—for all nonlinear sources, their final spatial distributions for the previous time step are used. As a result, a chain of initial-boundary value problems is obtained, connected by initial—final data at each step of the time grid. For this chain of linearized problems, the existence and uniqueness of the solution of the initial-boundary value problem for the system of partial differential equations in the Hilbert space were researched. Numerical experiments were performed for model problems of the main types of phytoplankton populations in coastal systems under the influence of dynamically changing biotic and abiotic factors, the results of which are consistent with real physical experiments. The developed model, including the proposed model of biological kinetics, allows for the study of the productive and destructive processes of the shallow water body biocenosis to assess the state of the processes of reproduction of valuable and commercial fish participating in the food chain with selected species of summer phytoplankton.
In recent years, the number of adverse and dangerous natural and anthropogenic phenomena has increased in coastal zones around the world. The development of mathematical modeling methods allows us to increase the accuracy of the study of hydrodynamic processes and the prediction of extreme events. This article discusses the application of the modified Upwind Leapfrog scheme to the numerical solution of hydrodynamics and convection–diffusion problems. To improve the accuracy of solving the tasks in the field of complex shapes, the method of filling cells is used. Numerical experiments have been carried out to simulate the flow of a viscous liquid and the transfer of substances using a linear combination of Upwind and Standard Leapfrog difference schemes. It is shown that the application of the methods proposed in the article allows us to reduce the approximation error in comparison with standard schemes in the case of large grid numbers of Péclet and to increase the smoothness of the solution accuracy at the boundary. The soil dumping and suspended matter propagation problems are solved using the developed schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.