Class Imbalance Learning (CIL) merupakan proses pembelajaran untuk representasi data dan ekstraksi informasi dengan distribusi data yang buruk untuk mendukung pembuatan keputusan yang efektif dalam proses pengambilan keputusan. SMOTE-N adalah salah satu pendekatan data-level dalam CIL mengunakan metode over-sampling. SMOTE-N menghasilkan instance sintesis untuk menyeimbangkan jumlah instance pada kelas minoritasnya. Penelitian ini mengaplikasikan SMOTE-N pada dataset Tuberculosis Anak (TB Anak) yang memiliki ketidakseimbangan kelas. Metode over-sampling dipilih untuk menghindari kehilangan informasi yang penting dikarenakan dataset TB Anak memiliki jumlah instance yang sedikit. Naïve Bayes Classifier digunakan untuk mengevaluasi model dari dataset yang sudah seimbang. Hasilnya menunjukkan bahwa SMOTE-N dapat meningkatkan kinerja pada CIL.
<span lang="EN-US">Data imbalance is one of the problems in the application of machine learning and data mining. Often this data imbalance occurs in the most essential and needed case entities. Two approaches to overcome this problem are the data level approach and the algorithm approach. This study aims to get the best model using the pap smear dataset that combined data levels with an algorithmic approach to solve data imbalanced. The laboratory data mostly have few data and imbalance. Almost in every case, the minor entities are the most important and needed. Over-sampling as a data level approach used in this study is the synthetic minority oversampling technique-nominal (SMOTE-N) and adaptive synthetic-nominal (ADASYN-N) algorithms. The algorithm approach used in this study is the ensemble classifier using AdaBoost and bagging with the classification and regression tree (CART) as learner-based. The best model obtained from the experimental results in accuracy, precision, recall, and f-measure using ADASYN-N and AdaBoost-CART.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.