It has been previously reported that N-terminus of mutant huntingtin (product of the 1st exon) is sufficient to cause a Huntington's disease (HD) pathological phenotype. In view of recent data suggesting that improper regulation of store-operated calcium (SOC) channels is involved in neurodegenerative processes, we investigated influence of expression of the mutant huntingtin N-terminal fragment (Htt138Q-1exon) on SOC entry (SOCE) in mouse neuroblastoma cells (Neuro-2a) and in primary culture of medium spiny neurons (MSNs) isolated from mice. The results show that SOCE in these cells is enhanced upon lentiviral expression of the Htt138Q-1exon. Moreover, we demonstrated that RNAi-mediated knockdown of TRPC1, Orai1, or STIM1 proteins leads to dramatic reduction of abnormal SOCE in both Neuro-2a and MSNs, expressing Htt138Q-1exon. Thus, we concluded that abnormal SOCE in these cells is maintained by both TRPC1- and Orai1-containing channels and required STIM1 for its activation. Furthermore, EVP4593 compound previously tested as a potential anti-HD drug in a Drosophila screening system has proved to be capable of reducing SOCE to the normal level in MSNs expressing the Htt138Q-1exon.
Episodic ataxia type 6 is an inherited neurological condition characterized by combined ataxia and epilepsy. A severe form of this disease with episodes combining ataxia, epilepsy and hemiplegia was recently associated with a proline to arginine substitution at position 290 of the excitatory amino acid transporter 1 in a heterozygous patient. The excitatory amino acid transporter 1 is the predominant glial glutamate transporter in the cerebellum. However, this glutamate transporter also functions as an anion channel and earlier work in heterologous expression systems demonstrated that the mutation impairs the glutamate transport rate, while increasing channel activity. To understand how these changes cause ataxia, we developed a constitutive transgenic mouse model. Transgenic mice display epilepsy, ataxia and cerebellar atrophy and, thus, closely resemble the human disease. We observed increased glutamate-activated chloride efflux in Bergmann glia that triggers the apoptosis of these cells during infancy. The loss of Bergmann glia results in reduced glutamate uptake and impaired neural network formation in the cerebellar cortex. This study shows how gain-of-function of glutamate transporter-associated anion channels causes ataxia through modifying cerebellar development.
This is an open access article under the terms of the Creat ive Commo ns Attri bution-NonCo mmercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.