Many asymptotic results for kernel-based estimators were established under some smoothness assumption on density. For cases where smoothness assumptions that are used to derive unbiasedness or asymptotic rate may not hold we propose a combined estimator that could lead to the best available rate without knowledge of density smoothness. A Monte Carlo example con…rms good performance of the combined estimator.JEL code C14
1Results on nonparametric kernel estimators of density differ according to the assumed degree of density smoothness; it is often assumed that the density function is at least twice differentiable. However, there are cases where non-smooth density functions may be of interest. We provide asymptotic results for kernel estimation of a continuous density for an arbitrary bandwidth/kernel pair. We also derive the limit joint distribution of kernel density estimators corresponding to different bandwidths and kernel functions. Using these results, we construct an estimator that combines several estimators for different bandwidth/kernel pairs to protect against the negative consequences of errors in assumptions about order of smoothness. The results of a Monte Carlo experiment confirm the usefulness of the combined estimator. We demonstrate that while in the standard normal case the combined estimator has a relatively higher mean squared error than the standard kernel estimator, both estimators are highly accurate. On the other hand, for a non-smooth density where the MSE gets very large, the combined estimator provides uniformly better results than the standard estimator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.