The research data on the specific features of the formation of oxide films on the Ti6Al4V alloy in the ethylene glycol-water electrolytes have been given. The kinetic dependences obtained for the alloy allowed us to establish that the specific features of the formation of oxide films during the electrochemical oxidation of the alloy surface depend on the solution composition and the current density. For the water-to-alcohol ratio of 50:50 the kinetic dependences show the sections that correspond to the formation of the barrier oxide layer and also to the formation of the pores due to the desorption of fluoride ions and the growth of the porous portion of oxide. As the water-to- alcohol ratio is decreased the indicated peculiarities of kinetic dependences are met not so often and do not obey any regularity. The obtained data are explained by the fact that an increase in the portion of the organic component of the solution results in a decreased etching capacity of the electrolyte due to the controlled activity of fluoride ions. The anode current density value has a similar effect on the variation of kinetic dependences. Its effect is explained by that an increase in the alloy oxidation rate results in the fast formation of the surface oxide and the specific features of kinetic curves are concealed. The linear relationship between the formation time of oxide of a minimum thickness for given conditions and the current density is unavailable and it is conditioned by the chemical interaction of the oxide film with electrolyte components. The obtained research data can be used for the formation of the individual bioinert and bioactive coatings for the implants of a medical purpose or for the formation of the matrix used for the production of composite coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.