Induced pluripotent stem cell (iPS) reprogramming allows to turn a differentiated somatic cell into a pluripotent cell. This process is accompanied by many changes in fundamental cell properties, such as energy production, cell-to-cell interactions, cytoskeletal organization, and others. Real-time quantitative polymerase chain reaction (RT-qPCR) can be used as a quantitative method of gene expression analysis to investigate iPS reprogramming but it requires a validation of reference genes for the accurate assessment of target genes’ expression. Currently, studies evaluating the performance of reference genes during iPS reprogramming are lacking. In this study we analysed the stability of 12 housekeeping genes during 20 days of iPS reprogramming of murine cells based on statistical analyses of RT-qPCR data using five different statistical algorithms. This study reports strong variations in housekeeping gene stability during the reprogramming process. Most stable genes were Atp5f1, Pgk1 and Gapdh, while the least stable genes were Rps18, Hprt, Tbp and Actb. The results were validated by a proof-of-point qPCR experiment with pluripotent markers Nanog, Rex1 and Oct4 normalized to the best and the worst reference gene identified by the analyses. Overall, this study and its implications are particularly relevant to investigations on the cell-state and pluripotency in iPS reprogramming.
Early life stress (ELS) is one of the most critical factors that could modify brain plasticity, memory and learning abilities, behavioral reactions, and emotional response in adulthood leading to development of different mental disorders. Prenatal and early postnatal periods appear to be the most sensitive periods of brain development in mammals, thereby action of various factors at these stages of brain development might result in neurodegeneration, memory impairment, and mood disorders at later periods of life. Deciphering the processes underlying aberrant neurogenesis, synaptogenesis, and cerebral angiogenesis as well as deeper understanding the effects of ELS on brain development will provide novel approaches to prevent or to cure psychiatric and neurological deficits caused by stressful conditions at the earliest stages of ontogenesis. Neuropeptide oxytocin serves as an amnesic, anti-stress, pro-angiogenic, and neurogenesis-controlling molecule contributing to dramatic changes in brain plasticity in ELS. In the current review, we summarize recent data on molecular mechanisms of ELS-driven changes in brain plasticity with the particular focus on oxytocin-mediated effects on neurogenesis and angiogenesis, memory establishment, and forgetting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.