In this paper, we introduce an ''on the device'' text line recognition framework that is designed for mobile or embedded systems. We consider per-character segmentation as a language-independent problem and individual character recognition as a language-dependent one. Thus, the proposed solution is based on two separate artificial neural networks (ANN) and dynamic programming instead of employing image processing methods for the segmentation step or end-to-end ANN. To satisfy the tight constraints on memory size imposed by embedded systems and to avoid overfitting, we employ ANNs with a small number of trainable parameters. The primary purpose of our framework is the recognition of low-quality images of identity documents with complex backgrounds and a variety of languages and fonts. We demonstrate that our solution shows high recognition accuracy on natural datasets even being trained on purely synthetic data. We use MIDV-500 and Census 1961 Project datasets for text line recognition. The proposed method considerably surpasses the algorithmic method implemented in Tesseract 3.05, the LSTM method (Tesseract 4.00), and unpublished method used in the ABBYY FineReader 15 system. Also, our framework is faster than other compared solutions. We show the language-independence of our segmenter with the experiment with Cyrillic, Armenian, and Chinese text lines.
Identity documents recognition is an important sub-field of document analysis, which deals with tasks of robust document detection, type identification, text fields recognition, as well as identity fraud prevention and document authenticity validation given photos, scans, or video frames of an identity document capture. Significant amount of research has been published on this topic in recent years, however a chief difficulty for such research is scarcity of datasets, due to the subject matter being protected by security requirements. A few datasets of identity documents which are available lack diversity of document types, capturing conditions, or variability of document field values. In this paper, we present a dataset MIDV-2020 which consists of 1000 video clips, 2000 scanned images, and 1000 photos of 1000 unique mock identity documents, each with unique text field values and unique artificially generated faces, with rich annotation. The dataset contains 72409 annotated images in total, making it the largest publicly available identity document dataset to the date of publication. We describe the structure of the dataset, its content and annotations, and present baseline experimental results to serve as a basis for future research. For the task of document location and identification content-independent, feature-based, and semantic segmentation-based methods were evaluated. For the task of document text field recognition, the Tesseract system was evaluated on field and character levels with grouping by field alphabets and document types. For the task of face detection, the performance of Multi Task Cascaded Convolutional Neural Networks-based method was evaluated separately for different types of image input modes. The baseline evaluations show that the existing methods of identity document analysis have a lot of room for improvement given modern challenges. We believe that the proposed dataset will prove invaluable for advancement of the field of document analysis and recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.