Introduction: It is believed that hippocampal exposure plays a major role in the development of memory disorders after cranial irradiation. This effect is evident in whole-brain irradiation and is less certain in local irradiation of intracranial targets. The present study aims to clarify the dosimetric features and dynamics of memory functions after local irradiation of the hippocampus when treating cavernous sinus meningiomas.Methods: The study included 28 patients (24 females and 4 males) with cavernous sinus meningiomas diagnosed according to typical clinical and radiological findings. The mean age was 52 years (30-65 years). Stereotactic radiotherapy in standard fractionation regimen (54 Gy total dose) was the primary treatment in all patients. Patients underwent memory testing (ability to reproduce and recognize) using a previously developed and validated methodology at standard time points: before the start of radiotherapy, at the end of the course, and 6 and 12 months after treatment. Hippocampal dose, dynamics of memory function, and their possible relationship were evaluated.Results: In total, 28 cavernous sinus meningiomas (15 left-sided and 13 right-sided) were treated. The mean target volume was 24.0 ccm (8.2 ccm to 53.8 ccm). Twelve months after radiotherapy, there was an increase in the median total number of recognition errors from 6.5 [4;11] to 9.5 [5;12], p=0.025, the median number of "old-similar" errors from 2 [1;3.25] to 3 [1.75;5], p=0.021, and the median number of "similar-old" errors from 3 [1;5] to 5.5 [3;7], p<0.001. The number of reproduction errors did not increase. A moderate correlation (p = 0.03, correlation coefficient = 0.41) was found between the dose to 10% of the ipsilateral hippocampus and the total number of reproduction errors at the end of the course. No other significant correlations were found at the end of radiotherapy and six and 12 months after it. Conclusion: Thus, even partial lateralized exposure of the hippocampus during irradiation of the cavernous sinus meningiomas affects its function in the form of specific pattern separation type disturbances, which are detected as early as 12 months after the impact. The hippocampus in this treatment should be considered as a critical structure whose sensitivity to irradiation requires additional assessment.
Although the key scene of the hippocampus in memory processes is obvious, the specificity of its participation in information processing is far from being established. Current advanced neuroimaging enables to operate with precise morphometric parameters.The aim of the study was to reveal fine memory rearrangements under mechanical impact on the hippocampus by a neoplasm and radiation exposure in the course of therapy.Materials and Methods. We used a homogeneous sample of 28 patients with parasellar meningiomas adjacent to hippocampus. In 10 patients (5 with left-sided and 5 with right-sided meningiomas), the tumor was located near the hippocampus but exhibited no mechanical effect on it. In 18 patients (10 with left-sided and 8 with right-sided tumors), the neoplasm compressed the adjacent hippocampus. The control group consisted of 39 healthy subjects. All three groups were comparable in age, education, and gender characteristics. In order to control tumor growth, the patients underwent radiotherapy when the hippocampus involuntary was exposed to a dose comparable to that in the tumor (30 sessions with a single focal dose of 1.8 Gy, total dose -54.0 Gy).Based on the literature data on hippocampus involved in mnestic processes, a special methodology to investigate memory was developed. Incorrect responses the subjects made when identifying previously memorized images were classified as neutralizing the novelty factor of an identified stimulus or as wrongly emphasizing its novelty.Results. At the first observation point (before radiation therapy) all groups underwent a complete standardized neuropsychological examination and performed a battery of cognitive tests. The overall results of the tests assessing attention, memory, thinking processes, and neurodynamic indicators corresponded to standard values. A mild brain compression by the tumor without brain tissue destruction was not accompanied by focal neuropsychological symptoms and deficit manifestations in the cognitive sphere. However, as early as in the first observation point, the number of "pattern separation" errors in the clinical group was significantly higher than that in healthy subjects.The second observation point (immediately after radiotherapy) and the third observation point -6 months after the treatmentshowed that, in general, the patients' cognitive sphere condition was not deteriorating, and in a number of parameters was characterized by positive dynamics, apparently associated with some tumor reduction due to the therapy provided. However, the distribution of errors in the original method significantly changed. When previously memorized stimuli were recognized, the errors neutralizing the novelty factor of the evaluated stimulus increased, while the number of errors with overestimating the stimuli novelty decreased.All tendencies hypothetically (according to the published data) associated with the changes in functional activity of the hippocampus were more pronounced in the subgroup of patients with mechanical impact of the tumor on hippocampu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.