This paper provides a critical review of the literature on deep learning applications in breast tumor diagnosis using ultrasound and mammography images. It also summarizes recent advances in computer-aided diagnosis/detection (CAD) systems, which make use of new deep learning methods to automatically recognize breast images and improve the accuracy of diagnoses made by radiologists. This review is based upon published literature in the past decade (January 2010–January 2020), where we obtained around 250 research articles, and after an eligibility process, 59 articles were presented in more detail. The main findings in the classification process revealed that new DL-CAD methods are useful and effective screening tools for breast cancer, thus reducing the need for manual feature extraction. The breast tumor research community can utilize this survey as a basis for their current and future studies.
Background: Colposcopy imaging is widely used to diagnose, treat and follow-up on premalignant and malignant lesions in the vulva, vagina, and cervix. Thus, deep learning algorithms are being used widely in cervical cancer diagnosis tools. In this study, we developed and preliminarily validated a model based on the Unet network plus SVM to classify cervical lesions on colposcopy images. Methodology: Two sets of images were used: the Intel & Mobile ODT Cervical Cancer Screening public dataset, and a private dataset from a public hospital in Ecuador during a routine colposcopy, after the application of acetic acid and lugol. For the latter, the corresponding clinical information was collected, specifically cytology on the PAP smear and the screening of human papillomavirus testing, prior to colposcopy. The lesions of the cervix or regions of interest were segmented and classified by the Unet and the SVM model, respectively. Results: The CAD system was evaluated for the ability to predict the risk of cervical cancer. The lesion segmentation metric results indicate a DICE of 50%, a precision of 65%, and an accuracy of 80%. The classification results’ sensitivity, specificity, and accuracy were 70%, 48.8%, and 58%, respectively. Randomly, 20 images were selected and sent to 13 expert colposcopists for a statistical comparison between visual evaluation experts and the CAD tool (p-value of 0.597). Conclusion: The CAD system needs to improve but could be acceptable in an environment where women have limited access to clinicians for the diagnosis, follow-up, and treatment of cervical cancer; better performance is possible through the exploration of other deep learning methods with larger datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.