No abstract
Atomistic-scale simulations are prominent scientific applications that require the repetitive execution of a computationally expensive routine to calculate a system's potential energy. Prior work shows that these expensive routines can be replaced with a machinelearned surrogate approximation to accelerate the simulation at the expense of the overall accuracy. The exact balance of speed and accuracy depends on the specific configuration of the surrogatemodeling workflow and the science itself, and prior work leaves it up to the scientist to find a configuration that delivers the required accuracy for their science problem. Unfortunately, due to the underlying system dynamics, it is rare that a single surrogate configuration presents an optimal accuracy/latency trade-off for the entire simulation. In practice, scientists must choose conservative configurations so that accuracy is always acceptable, forgoing possible acceleration. As an alternative, we propose Proxima, a systematic and automated method for dynamically tuning a surrogatemodeling configuration in response to real-time feedback from the ongoing simulation. Proxima estimates the uncertainty of applying a surrogate approximation in each step of an iterative simulation. Using this information, the specific surrogate configuration can be adjusted dynamically to ensure maximum speedup while sustaining a required accuracy metric. We evaluate Proxima using a Monte Carlo sampling application and find that Proxima respects a wide range of user-defined accuracy goals while achieving speedups of 1.02-5.5× relative to a standard implementation with no surrogate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.