The extent of water deficit and drought loss mitigation, through human activities such as defense, mitigation, and resistance to drought risk, is revealed by its effects on agriculture. To analyze the distribution regularities of the effects of drought mitigation on agriculture and to provide better insight on drought mitigation actions, an expectation index of drought mitigation effects (EDRE) was formulated based on the definitions of the drought system. The crop yield when no drought mitigation measures were implemented was calculated via tests and simulations, and expectations of drought-related yield loss with and without drought mitigation measures (EDRL and EDRM, respectively) were calculated in the drought loss risk assessment model. Then, a quantitative assessment model for the effects of drought mitigation on regional agriculture was built. Using a case study from the Huaibei Plain in the Anhui Province of China, it was found that drought mitigation effects decrease gradually from North to South. Moreover, small values of drought mitigation effects correspond to large EDRM and small EDRL values. It is necessary to urgently improve drought mitigation measures in locations where EDRE is small and EDRL is large, or where EDRE is small and EDRM is large. The main drought mitigation measures were identified through correlation analysis. Additionally, the adaptation of drought mitigation measures to local conditions leads to a spatial distribution regularity.
Meiyu is the term used to depict the consecutive rainy weather advancing in the months before the flooding season in East Asia. However, the temporal-spatial climatic characteristics of Meiyu can be differently specified by different evaluation criteria. In this study, we employ both the atmospheric circulation conditions and meteorological factors to identify the spatial characteristics of precipitation of Meiyu in Anhui Province using the collected data of 1957–2020. We further conduct a comparison analysis of the precipitation characteristics in the northern Huaihe River of Aihui province (NHA) with Meiyu rainfall features in two other regions: south of the Yangtze River in Anhui Province (SYA) and the region between the Yangtze River and Huaihe River in Anhui Province (YHA). Finally, the relation between the intensity index between Meiyu and flood or drought is investigated. The results showed that the climatic feature in NHA is a transitional region between Meiyu and non-Meiyu. Also, we proposed a Meiyu intensity index determined by the precipitation amount, intensity, and days of heavy rain. This index performs better than the Meiyu intensity index of National Standard in terms of flood and drought identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.