Abstract. Demand Side Management is a key conceptwithin the Smart Grid vision to promote energy efficiency, load flexibility and interaction between the consumers and other power grid stakeholders. Disaggregated information requires an advanced load monitoring system of individual appliance consumption. A smart house is envisioned to include a Nonintrusive Load Monitoring (NILM) system to support demand side management and motivate the users to adopt energy saving practices. NILM systems use input electrical measurements taken at the energy meter point of a house and estimate the individual appliance operation and consumption through mathematical algorithms. Each appliance can be distinguished from others through a set of particular attributes namely load signatures that can be computed from transient signals, steady state signals or both. This paper aims to characterize current switching transients, for NILM applications and to discuss how they are affected by variation of factors such as point on wave of switching, network impedance, supply voltage distortion and sampling frequency of the meter. For that purpose, measurements of residential appliances of several categories are acquired and processed. The conclusion of this work is the assessment of suitability, robustness and efficiency of appliance identification based on current transients.
Smart Grid paradigm promotes advanced load monitoring applications to support demand side management and energy savings. Recently, considerable attention has been paid to Non-Intrusive Load Monitoring to estimate the individual operation and power consumption of the residential appliances, from single point electrical measurements. This approach takes advantage of signal processing in order to reduce the hardware effort associated to systems with multiple dedicated sensors. Discriminative characteristics of the appliances, namely load signatures, could be extracted from the transient or steady state electrical signals. In this paper the effect of impact factors that can affect the steady state load signatures under realistic conditions are investigated: the voltage supply distortion, the network impedance and the sampling frequency of the metering equipment. For this purpose, electrical measurements of several residential appliances were acquired and processed to obtain some indices in the time domain. Results include the comparison of distinct scenarios, and the evaluation of the suitability and discrimination capacity of the steady state information.Keywords: Nonintrusive load monitoring, load signatures, appliance identification, demand side management. RESUMENEl paradigma de las redes inteligentes promueve aplicaciones de monitorización avanzada de carga para apoyar la gestión de la demanda y los ahorros energéticos. La monitorización no intrusiva de carga ha generado un creciente interés para estimar la operación y el consumo individual de potencia de los aparatos residenciales, a partir de mediciones eléctricas en un solo punto. Este enfoque aprovecha las ventajas del procesamiento de señales para reducir los esfuerzos de hardware asociados a los sistemas con múltiples sensores dedicados. Algunas características distintivas de los aparatos, llamadas firmas de carga, pueden ser extraídas de señales en estado transitorio o estable. En este artículo se investiga el efecto de algunos factores que pueden afectar las firmas estacionarias de carga bajo condiciones reales: distorsión en la tensión de suministro, impedancia de la red y frecuencia de muestreo del equipo de medida. Para tal fin, se adquirieron y procesaron mediciones eléctricas de diferentes aparatos residenciales para obtener algunos índices en el dominio del tiempo. Los resultados incluyen comparaciones entre distintos escenarios y evaluación de la idoneidad y la capacidad de discriminación de la información del estado estable.Palabras clave: Monitorización no intrusiva de carga, firmas de carga, identificación de aparatos, gestión de la demanda.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.