Health effect estimates depend on the methods of evaluating exposures. Due to non-linearities in the exposure-response relationships, both the predicted mean exposures as well as its spatial variability are significant. The aim of this work is to systematically quantify the impact of the spatial resolution on population-weighted mean concentration (PWC), its variance, and mortality attributable to fine particulate matter (PM 2.5) exposure in Finland in 2015. The atmospheric chemical transport model SILAM was used to estimate the ambient air PM 2.5 concentrations at 0.02°longitudinal × 0.01°latitudinal resolution (ca. 1 km), including both the national PM 2.5 emissions and the long-range transport. The decision-support model FRES source-receptor matrices applied at 250-m resolution was used to model the ambient air concentrations of primary fine particulate matter (PPM 2.5) from local and regional sources up to 10 km and 20 km distances. Numerical averaging of population and concentrations was used to produce the results for coarser resolutions. Population-weighted PM 2.5 concentration was 11% lower at a resolution of 50 km, compared with the corresponding computations at a resolution of 1 km. However, considering only the national emissions, the influences of spatial averaging were substantially larger. The average population-weighted local PPM 2.5 concentration originated from Finnish sources was 70% lower at a resolution of 50 km, compared with the corresponding result obtained using a resolution of 250 m. The sensitivity to spatial averaging, between the finest 250-m and the coarsest 50-km resolution, was highest for the emissions of PPM 2.5 originated from national vehicular traffic (about 80% decrease) and lowest for Electronic supplementary material The online version of this article (
Air pollution has been estimated to be one of the leading environmental health risks in Finland. National health impact estimates existing to date have focused on particles (PM) and ozone (O3). In this work, we quantify the impacts of particles, ozone, and nitrogen dioxide (NO2) in 2015, and analyze the related uncertainties. The exposures were estimated with a high spatial resolution chemical transport model, and adjusted to observed concentrations. We calculated the health impacts according to Word Health Organization (WHO) working group recommendations. According to our results, ambient air pollution caused a burden of 34,800 disability-adjusted life years (DALY). Fine particles were the main contributor (74%) to the disease burden, which is in line with the earlier studies. The attributable burden was dominated by mortality (32,900 years of life lost (YLL); 95%). Impacts differed between population age groups. The burden was clearly higher in the adult population over 30 years (98%), due to the dominant role of mortality impacts. Uncertainties due to the concentration–response functions were larger than those related to exposures.
This review analyzes the state and recent progress in the field of information support for pollen allergy sufferers. For decades, information available for the patients and allergologists consisted of pollen counts, which are vital but insufficient. New technology paves the way to substantial increase in amount and diversity of the data. This paper reviews old and newly suggested methods to predict pollen and air pollutant concentrations in the air and proposes an allergy risk concept, which combines the pollen and pollution information and transforms it into a qualitative risk index. This new index is available in an app (Mobile Airways Sentinel NetworK-air) that was developed in the frame of the European Union grant Impact of Air POLLution on sleep, Asthma and Rhinitis (a project of European Institute of Innovation and Technology-Health). On-going transformation of the pollen allergy information support is based on new technological solutions for pollen and air quality monitoring and predictions. The new information-technology and artificial-intelligence-based solutions help to convert this information into easy-to-use services for both medical practitioners and allergy sufferers.
In December 2019, a conference entitled "Europe That Protects: Safeguarding Our Planet, Safeguarding Our Health" was held in Helsinki. It was co-organized by the Finnish Institute for Health and Welfare, the Finnish Environment Institute and the European Commission, under the auspices of Finland's Presidency of the EU. As a side event, a symposium organized as the final POLLAR (Impact of air POLLution on Asthma and Rhinitis) meeting explored the digital transformation of health and care to sustain planetary health in airway diseases. The Finnish Allergy Programme collaborates with MASK (Mobile Airways Sentinel NetworK) and can be considered as a proof-of-concept to impact
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.