We consider a mixed boundary-value problem for the Poisson equation in a plane thick junction Ω ε which is the union of a domain Ω 0 and a large number of ε−periodically situated thin rods. The nonuniform Signorini conditions are given on the vertical sides of the thin rods. The asymptotic analysis of this problem is made as ε → 0, i.e., when the number of the thin rods infinitely increases and their thickness tends to zero. With the help of the integral identity method we prove the convergence theorem and show that the nonuniform Signorini conditions are transformed (as ε → 0) in the limiting variational inequalities in the region that is filled up by the thin rods in the limit passage. The existence and uniqueness of the solution to this non-standard limit problem is established. The convergence of the energy integrals is proved as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.