BackgroundThe plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL + matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over.Methodology/Principal FindingsHere, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level.ConclusionsThe ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.
The unique electronic structure found at interfaces between materials can allow unconventional quantum states to emerge. Here we report on the discovery of superconductivity in electron gases formed at interfaces between (111) oriented KTaO3 and insulating overlayers of either EuO or LaAlO3. The superconducting transition temperature, approaching 2.2 K, is about one order of magnitude higher than that of the LaAlO3/SrTiO3 system. Strikingly, similar electron gases at KTaO3 (001) interfaces remain normal down to 25 mK. The critical field and current-voltage measurements indicate that the superconductivity is two dimensional. In EuO/KTaO3 (111) samples, a spontaneous in-plane transport anisotropy is observed prior to the onset of superconductivity, suggesting the emergence of a distinct ‘stripe’ like phase, which is also revealed near the critical field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.