We report two new triarylamine-cyanoacrylic acid based push–pull dyes, X76 and X77, featuring the π-conjugated linkers of dihexyl- and dihexyloxybenzene-substituted dithieno[2,3-d:2′,3′-d′]thieno[3,2-b:3′,2′-b′]dipyrrole (DTDP), respectively.
Indoline photosensitizers exhibit impressive short-circuit photocurrent but generally low molar extinction coefficient and rapid charge recombination, which limits their application in thin-film dye-sensitizerd solar cells (DSCs). Here, we incorporate a new dithieno[3,2-b:2',3'-d]pyrrole (DTP) segment (i.e., dihexyloxy-triphenylamine (DHO-TPA) substituted DTP) as the conjugated π-linker to construct a series of high molar absorption coefficient indoline dyes (XW69, XW70, and XW71) for DSCs employing a cobalt(II/III) redox electrolyte. Interestingly, this DTP linker is demonstrated as an efficient building block, not only slowing down the kinetics of charge recombination of titania electrons with tris(1,10-phenanthroline)cobalt(III) ions but also making a great contribution to the light absorption properties in comparison with the dihexylaniline substituted DTP. With respect to the dihexyloxy-triphenylamine dye (XW68), these new indoline dyes exhibit stronger light-harvesting and thus better power conversion efficiency of DSCs made from thin titania films. Benefitting from the bulky rigidity of the donor and π-conjugation unit, the XW70 dye displays a promising conversion efficiency as high as 8.78%, with a short-circuit current density (J(SC)) of 13.3 mA cm(-2), open-circuit voltage (V(OC)) of 943 mV, and fill factor (FF) of 0.70 under AM 1.5 illumination (100 mW cm(-2)). Furthermore, the effect of light irradiation on these dyes adsorbed on nanocrystalline TiO2 films was investigated, proving the photostability of these indoline chromophores. Our work has valued the feasibility of judicious design of indoline chromophores to obtain organic photosensitizers for high-efficiency iodine-free DSCs made from thin titania films.
Two P-type organic molecules containing indolocarbazole and methoxy (or methylthio) substituted triphenylamine are designed and synthesized as interface layers to passivate surface defects and meanwhile protect perovskite films from water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.