Carbon‐supported NiII single‐atom catalysts with a tetradentate Ni‐N2O2 coordination formed by a Schiff base ligand‐mediated pyrolysis strategy are presented. A NiII complex of the Schiff base ligand (R,R)‐(−)‐N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediamine was adsorbed onto a carbon black support, followed by pyrolysis of the modified carbon material at 300 °C in Ar. The Ni‐N2O2/C catalyst showed excellent performance for the electrocatalytic reduction of O2 to H2O2 through a two‐electron transfer process in alkaline conditions, with a H2O2 selectivity of 96 %. At a current density of 70 mA cm−2, a H2O2 production rate of 5.9 mol gcat.−1 h−1 was achieved using a three‐phase flow cell, with good catalyst stability maintained over 8 h of testing. The Ni‐N2O2/C catalyst could electrocatalytically reduce O2 in air to H2O2 at a high current density, still affording a high H2O2 selectivity (>90 %). A precise Ni‐N2O2 coordination was key to the performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.