In the present study, the over-constrained hybrid manipulator R(2RPR)R/SP + RR is considered as the research objective. In this paper, kinematics of the hybrid manipulator, including the forward and inverse position, are analyzed. Then, the workspace is checked based on the inverse position solution to evaluate whether the workspace of the hybrid manipulator meets the requirements, and the actual workspace of the hybrid robot is analyzed. After that, the force analysis of the over-constrained parallel mechanism is carried out, and an ADAMS-ANSYS rigid-flexible hybrid body model is established to verify the simulation. Based on the obtained results from the force analysis, the manipulator structure is design. Then, the structure optimization is carried out to improve the robot stiffness. Finally, calibration and workspace verification experiments are performed on the prototype, cutting experiment of an S-shaped aluminum alloy workpiece is completed, and the experiment verifies the processing ability of the prototype and proves that the prototype has good application prospects.
Dynamic performance is an important performance of robots used for machine processing. This paper studies the dynamic modeling and evaluation method of a 5-DOF (Degree of Freedom) hybrid robot used in aerospace composite material processing. With the consideration of the dynamics of the serial part, the complete dynamic model of the hybrid robot is established based on the virtual work principle. In addition to the widely considered acceleration term, a dynamic performance evaluation index that comprehensively considers the acceleration term, velocity term and gravity term in the dynamic model is proposed. Using the dynamic performance index, the effect of the placement direction of the robot and the arrangement of the double symmetric limbs on robot dynamics are investigated. The results indicate that the vertical placement is beneficial to the dynamics of the hybrid robot, and the arrangement of double symmetric limbs has different effects on different limbs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.