The present paper focuses on the Lagrange optimization of shock waves for a two-dimensional hypersonic inlet by limiting the cowl internal angle and inlet length. The results indicate the significant influences of geometric constraints on the configuration of shock waves and performances of an inlet. Specifically, the cowl internal angle mainly affects the internal compression section; the inlet length affects both the internal and external compression sections where the intensity of internal and external compression shock waves shows a deviation of equal. In addition, the performances of optimized inlets at off-design points are further numerically simulated. A prominent discovery is that a longer inlet favors a higher total pressure recovery at the positive AOA; conversely, a shorter inlet can increase the total pressure recovery at the negative AOA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.