Reduced N-methyl-D-aspartate-receptor (NMDAR) signaling has been associated with schizophrenia, autism and intellectual disability. NMDAR-hypofunction is thought to contribute to social, cognitive and gamma (30–80 Hz) oscillatory abnormalities, phenotypes common to these disorders. However, circuit-level mechanisms underlying such deficits remain unclear. This study investigated the relationship between gamma synchrony, excitatory–inhibitory (E/I) signaling, and behavioral phenotypes in NMDA-NR1neo−/− mice, which have constitutively reduced expression of the obligate NR1 subunit to model disrupted developmental NMDAR function. Constitutive NMDAR-hypofunction caused a loss of E/I balance, with an increase in intrinsic pyramidal cell excitability and a selective disruption of parvalbumin-expressing interneurons. Disrupted E/I coupling was associated with deficits in auditory-evoked gamma signal-to-noise ratio (SNR). Gamma-band abnormalities predicted deficits in spatial working memory and social preference, linking cellular changes in E/I signaling to target behaviors. The GABAB-receptor agonist baclofen improved E/I balance, gamma-SNR and broadly reversed behavioral deficits. These data demonstrate a clinically relevant, highly translatable neural-activity-based biomarker for preclinical screening and therapeutic development across a broad range of disorders that share common endophenotypes and disrupted NMDA-receptor signaling.
People with schizophrenia exhibit impaired ability to modify electroencephalographic event-related potential (ERP) responses to novel stimuli. These deficits serve as a window into the abnormalities of neuronal organization and function and are thought to reflect a component of genetic vulnerability for schizophrenia. We describe differences among inbred mouse strains for ERPs following a novelty detection paradigm, as a model for genetic contributions to disease vulnerability. Auditory-evoked potentials were recorded during an auditory oddball task in nonanesthetized C57BL/6J, C3H/HeJ, and DBA/2J mice prior to and following ketamine (10 mg/kg). Stimuli consisted of 80 sets of 24 standard tones followed by one novel tone. Principal component analysis yielded four temporal components that contribute to the auditory ERP responses to standard and novel stimuli. Two principal components that varied between standard and novel stimuli also differed among inbred mouse strains. Post hoc analyses indicate that strain effects on novelty detection are due to a significant difference between the response to novel and standard tones in C3H/HeJ mice that is absent in the other two strains. Inbred strains of mice vary in their ability to perform neuronal detection of change in the auditory environment. The ability to model novelty detection deficits in mice will aid in identifying genetic contributions to abnormal neuronal organization in people with schizophrenia.
Background Neuronal activity at gamma frequency is impaired in schizophrenia (SZ) and is considered critical for cognitive performance. Such impairments are thought to be due to reduced N-Methyl-D-Aspartate Receptor (NMDAR)-mediated inhibition from parvalbumin (PV) interneurons, rather than a direct role of impaired NMDAR signaling on pyramidal neurons. However, recent studies suggest a direct role of pyramidal neurons in regulating gamma oscillations. In particular, a computational model has been proposed in which phasic currents from pyramidal cells could drive synchronized feedback inhibition from interneurons. As such, impairments in pyramidal neuron activity could lead to abnormal gamma oscillations. However, this computational model has not been tested experimentally and the molecular mechanisms underlying pyramidal neuron dysfunction in SZ remain unclear. Methods In the present study, we tested the hypothesis that SZ-related phenotypes could arise from reduced NMDAR signaling in pyramidal neurons using forebrain pyramidal neurons specific NMDA-R1 knocked-out mice. Results The mice displayed increased baseline gamma power as well as socio-cognitive impairments. These phenotypes were associated with increased pyramidal cell excitability due to changes in inherent membrane properties. Interestingly, mutant mice showed decreased expression of GIRK2 channels, which has been linked to increase neuronal excitability. Conclusions Our data demonstrate for the first time that NMDAR hypofunction in pyramidal cells is sufficient to cause electrophysiological, molecular, neuropathological and behavioral changes related to SZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.