Due to the complexity of medical imaging techniques and the high heterogeneity of glioma surfaces, image segmentation of human gliomas is one of the most challenging tasks in medical image analysis. Current methods based on convolutional neural networks concentrate on feature extraction while ignoring the correlation between local and global. In this paper, we propose a residual mix transformer fusion net, namely RMTF-Net, for brain tumor segmentation. In the feature encoder, a residual mix transformer encoder including a mix transformer and a residual convolutional neural network (RCNN) is proposed. The mix transformer gives an overlapping patch embedding mechanism to cope with the loss of patch boundary information. Moreover, a parallel fusion strategy based on RCNN is utilized to obtain local–global balanced information. In the feature decoder, a global feature integration (GFI) module is applied, which can enrich the context with the global attention feature. Extensive experiments on brain tumor segmentation from LGG, BraTS2019 and BraTS2020 demonstrated that our proposed RMTF-Net is superior to existing state-of-art methods in subjective visual performance and objective evaluation.
Person re-identification (Re-ID) aims to identify the same pedestrian from a surveillance video in various scenarios. Existing Re-ID models are biased to learn background appearances when there are many background variations in the pedestrian training set. Thus, pedestrians with the same identity will appear with different backgrounds, which interferes with the Re-ID performance. This paper proposes a swin transformer based on two-fold loss (TL-TransNet) to pay more attention to the semantic information of a pedestrian’s body and preserve valuable background information, thereby reducing the interference of corresponding background appearance. TL-TransNet is supervised by two types of losses (i.e., circle loss and instance loss) during the training phase. In the retrieval phase, DeepLabV3+ as a pedestrian background segmentation model is applied to generate body masks in terms of query and gallery set. The background removal results are generated according to the mask and are used to filter out interfering background information. Subsequently, a background adaptation re-ranking is designed to combine the original information with the background-removed information, which digs out more positive samples with large background deviation. Extensive experiments on two public person Re-ID datasets testify that the proposed method achieves competitive robustness performance in terms of the background variation problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.