Market segmentation is a division of consumer groups that have different needs, characteristics and behaviors (heterogeneous) in a particular market so that it becomes a homogeneous market unit, in this case it is very helpful in a more targeted marketing process so that company resources can be used effectively and efficient for example makes it easy to distinguish markets and recognize competitors with the same segment. CV. Lampegan Jaya is a company engaged in the distribution of food and beverage products including Meses Tulip Chocolate, Vita Zone, Bintang Sobo Tea, Preso Tea, Okky Jelly Drink, Fruit Tea, Bima Energy Nails, Coptic Cappuccino, Mizon and My Tea. These products are distributed to outlets spread across Bandung, Cianjur, Cileunyi, Cimahi, Soreang and Sumedang. Distribution of products is carried out based on the demand for outlets for the product. In this study a system of classifying customer segmentation based on products. This system can classify customers based on the number of purchases and area. The process of this customer grouping system uses a K-Medoid clustring algorithm to classify customers based on segmentation on the product purchase amount and area. With test data of 6 regions, 600 customer data and 28 products. Keywords: Market Segmentation, k-Medoids, , Food Products
Online Shop adalah salah satu fasilitas yang disajikan oleh internet, yang mampu mempermudah masyarakat dalam belanja tanpa harus bertatap muka dengan pelanggan, tanpa harus antri dan tawar menawar. Pertumbuhan ekonomi digital semakin besar persaingan bisnis juga akan semakin berat, akibatnya semakin banyak online shop tidak hanya menampilkan produk-produk tetapi juga perlu didukung oleh pemilihan produk yang tepat untuk menarik perhatian pelanggan. Terlalu banyaknya variasi produk yang ditawarkan secara random (acak) pada online shop membuat beberapa pelanggan kesulitan dalam menentukan produk yang akan dibeli. Berdasarkan permasalahan yang muncul maka penelitian mengenai Sistem Rekomendasi Penawaran Produk Pada Online Shop Menggunakan K-Means Clustering ini dilakukan. Sistem ini menggunakan algoritma K-Means Clustering serta dataset yang digunakan adalah data transaksi penjualan dari kurun waktu 1 tahun terakhir agar cakupanya tidak meluas dengan menggunakan data terbaru. Hasil dari penelitian ini ditemumakan bahwa ada 3 cluster yang memiliki karakteristik berbeda yaitu, cluster 1 dengan karakteristik penjualan sedang dengan rentang umur pembeli 36-50 tahun , cluster 2 dengan karakteristik penjualan terbanyak dengan rentang umur pembeli 18-26 tahun dan cluster 3 dengan karakteristik penjualan rendah dengan rentang umur 27-35 tahun. Dari hasil cluster dapat disimpulkan bahwa produk yang direkomendasikan merupakan produk terpopuluer dari setiap clusternya. Hasil perhitungan nilai sillhouette coeficient didapatkan cluster dengan jumlah 3 karena memiki nilai paling mendekati Si = 1 yaitu dengan nilai 0.7354092263523232.
Covid-19 adalah penyakit yang menular serta laju infeksi yang cepat,setelah mencapai 100 kasus yang dikonfirmasikan terinfeksi tingkat penyebarannya meluas, Dengan cepatnya penyebaran wabah Covid-19 masyarakat sangat prihatin dengan penyebaran dan dampaknya ,orang yang sebelumnya sudah memiliki gangguan kesehatan akan meningkatkan risiko terinfeksi Covid-19 gangguan kesehatan ini seperti,tuberkulosis,diabetes ,diare ,hipertensi.Ada pun Faktor lain yang mempengaruhi penyebaran Covid-19 sepert kepadatan penduduk yang tinggi di kota besar ,iklim,suhu dan daerah metropolitan merupakan faktor risiko utama untuk tertular virus. Dari adanya faktor yang mempengaruhi kasus covid-19 sehingga Satgas Penanganan Covid-19 menilai pentingnya bagi semua pihak termasuk masyarakat memahami faktor-faktor lonjakan kasus Covid-19 agar terhindar dari kasus itu.tujuan dari penelitian ini Menggunakan metode K-Means Clustering untuk analisis cluster pada wilayah yang memiliki karakteristik tingginya kasus covid-19 dan variable apa yang berpengaruh terhadap tingginya kasus covid-19 dan divisualisasi menggunakan Sistem informasi geografis sehingga diharapakan dapat menjadi informasi bagi masyarakat dan instansi kesehatan untuk memahami kelompok wilayah yang rentan. kesimpulannya wilayah kota bandung dikelompokan menjadi 3 cluster yang dimana cluster 1 itu wilayah dengan kasus covid-19 tertinggi dan faktor yang mempengaruhi covid-19 juga tinggi untuk cluster 2 memiliki tingkat kasus yang rendah dan cluster 3 memiliki tingkatan yang yang lebih rendah dari kedua cluster.
Education is an important thing in a person's life, because by having adequate education, one's life will be better. Education can be obtained formally through formal institutions that constructively provide a person's abilities academically. This study aims to determine student performance in terms of academic and non-academic domains at a certain time during their education using techniques in data mining (DM) which are directed towards academic data analysis. Academic performance is delivered through the Educational Data Mining (EDM) integrated data mining model, in which the techniques used include classification (ID3, SVM), clustering (k-Means, k-Medoids), association rules (Apriori) and anomaly detection (DBSCAN). The data set used is academic data in the form of study results over a certain period of time. The results of EDM can be used for analysis related to academic performance which can be used for strategic decision making in aca-demic management at higher education institutions. The results of this study indicate that the use of several techniques in data mining together can maximize the ability to analyze academic performance with the same data source and produce different analysis patterns.
Drought is a disaster that has a significant impact on agriculture, economics, health and the environment, and many other aspects of life all including Kabupaten Bandung Barat (KBB), Indonesia. The Regional Disaster Management Agency (BPBD) of KBB shows that in 2018, over 92,780 houses in 47 villages were affected by drought. This study aims to predict which area in KBB will be impacted by drought using Geographical Information System (GIS). Previous studies have shown much evidence that GIS will work, but none were done in Indonesia. We use the Simple Additive Weighting (SAW) method to create the ranking, categorization, and information on potential droughts. The method analyses historical drought impact, rainfall densities, water resources, rivers, and lakes availability, and settlement area. At the end of this study, we successfully categorize 162 villages into 4 categories. Accuracy on the result is also tested using real data from 2018, which resulted in 70.21% accuracy out compared to all 47 villages that were affected in 2018. An increase in accuracy of 72.50% also highlighted when comparing the result of very high potential and high potential area affected by drought with the 2018 data. Furthermore, a convincing 100% accuracy was obtained when comparing the top-10 data of very high potential in droughts and 2018 data. As our future recommendation, We suggest more parameters to be included in the calculations and also to use a 3-dimensional GIS approach as a tool to visualize the information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.