ADAM15 provides a scaffold for formation of CaM-dependent prosurvival signaling complexes upon CRAC/Orai coactivation by FasL-induced death signals and a potential therapeutic target to break apoptosis resistance in RASFs.
Mechanotransduction is elicited in cells upon the perception of physical forces transmitted via the extracellular matrix in their surroundings and results in signaling events that impact cellular functions. This physiological process is a prerequisite for maintaining the integrity of diarthrodial joints, while excessive loading is a factor promoting the inflammatory mechanisms of joint destruction. Here, we describe a mechanotransduction pathway in synovial fibroblasts (SF) derived from the synovial membrane of inflamed joints. The functionality of this pathway is completely lost in the absence of the disintegrin metalloproteinase ADAM15 strongly upregulated in SF. The mechanosignaling events involve the Ca2+-dependent activation of c-Jun-N-terminal kinases, the subsequent downregulation of long noncoding RNA HOTAIR, and upregulation of the metabolic energy sensor sirtuin-1. This afferent loop of the pathway is facilitated by ADAM15 via promoting the cell membrane density of the constitutively cycling mechanosensitive transient receptor potential vanilloid 4 calcium channels. In addition, ADAM15 reinforces the Src-mediated activation of pannexin-1 channels required for the enhanced release of ATP, a mediator of purinergic inflammation, which is increasingly produced upon sirtuin-1 induction.
The regulation of temporo-spatial compartmentalization of protein synthesis is of crucial importance for a variety of physiologic cellular functions. Here, we demonstrate that the cell membrane-anchored disintegrin metalloproteinase ADAM15, upregulated in a variety of aggressively growing tumor cells, in the hyperproliferative synovial membrane of inflamed joints as well as in osteoarthritic chondrocytes, transiently binds to poly(A) binding protein 1 (PABP) in cells undergoing adhesion. The cytoplasmic domain of ADAM15 was shown to selectively interact with the proline-rich linker of PABP. Immunostainings of adhesion-triggered cells demonstrate an ADAM15-dependent recruitment of PABP to cell membrane foci coinciding with ongoing mRNA translation as visualized by the detection of puromycin-terminated polypeptides. Moreover, the increase in cell membrane-associated neosynthesis of puromycylated proteins upon induction of cell adhesion was proven linked to ADAM15 expression in HeLa and ADAM15-transfected chondrocytic cells. Thus, down regulation of ADAM15 by siRNA and/or the use of a cell line transfected with a mutant ADAM15-construct lacking the cytoplasmic tail resulted in a considerable reduction in the amount of cell membrane-associated puromycylated proteins formed during induced cell adhesion.These results provide first direct evidence for a regulatory role of ADAM15 on mRNA translation at the cell membrane that transiently emerges in response to triggering cell adhesion and might have potential implications under pathologic conditions of matrix remodeling associated with ADAM15 upregulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.