RADA-16-I is a self-assembling peptide which forms biocompatible fibrils and hydrogels. We used molecular dynamics simulations, atomic-force microscopy, NMR spectroscopy, and thioflavin T binding assay to examine size, structure, and morphology of RADA-16-I aggregates. We used the native form of RADA-16-I (H-(ArgAlaAspAla)4 -OH) rather than the acetylated one commonly used in the previous studies. At neutral pH, RADA-16-I is mainly in the fibrillar form, the fibrils consist of an even number of stacked β-sheets. At acidic pH, RADA-16-I fibrils disassemble into monomers, which form an amorphous monolayer on graphite and monolayer lamellae on mica. RADA-16-I fibrils were compared with the fibrils of a similar peptide RLDL-16-I. Thickness of β-sheets measured by AFM was in excellent agreement with the molecular dynamics simulations. A pair of RLDL-16-I β-sheets was thicker (2.3 ± 0.4 nm) than a pair of RADA-16-I β-sheets (1.9 ± 0.1 nm) due to the volume difference between alanine and leucine residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.