Summary
In the Ustilago maydis genome, several novel secreted effector proteins are encoded by gene families. Because of the limited number of selectable markers, the ability to carry out sequential gene deletions has limited the analysis of effector gene families that may have redundant functions.
Here, we established an inducible FLP‐mediated recombination system in U. maydis that allows repeated rounds of gene deletion using a single selectable marker (HygR). To avoid genome rearrangements via FRT sites remaining in the genome after excision, different mutated FRT sites were introduced.
The FLP‐mediated selectable marker‐removal technique was successfully applied to delete a family of 11 effector genes (eff1) using five sequential rounds of recombination. We showed that expression of all 11 genes is up‐regulated during the biotrophic phase. Strains carrying deletions of 9 or all 11 genes showed a significant reduction in virulence, and this phenotype could be partially complemented by the introduction of different members from the gene family, demonstrating redundancy.
The establishment of the FLP/FRT system in a plant pathogenic fungus paves the way for analyzing multigene families with redundant functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.