The paper presents the results of comparing the microstructure of alloys of the Al – Ge system of eutectic and near- eutectic compositions synthesized at melt cooling rates of 102 and 105 K/s. It was shown by scanning electron microscopy that at a cooling rate of 102 K/s, crystallization starts with grain growth of the excess component and ends with a eutectic reaction. The microstructure of bulk samples is characterized by large inclusions of aluminum and germanium and heterogeneity of composition at sample cross section. The size reduction of phase particles of alloys of the Al – Ge system of eutectic and near-eutectic compositions is achieved using high-speed solidification. It is shown that the cooling rate of the melt increase causes size reduction of phase particles by 2–3 orders. The layering of the microstructure of the cross section of rapidly solidified foils was also revealed, and a mechanism for its formation was proposed taking into account changes in the solidification conditions over the thickness of the foil. Using differential scanning calorimetry, it was shown that an increase in the cooling rate provides a narrowing of the melting temperature range and an increase in the melting rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.