Energy storage systems with Li-ion batteries are increasingly deployed to maintain a robust and resilient grid and facilitate the integration of renewable energy resources. However, appropriate selection of cells for different applications is difficult due to limited public data comparing the most commonly used off-the-shelf Li-ion chemistries under the same operating conditions. This article details a multi-year cycling study of commercial LiFePO4 (LFP), LiNixCoyAl1−x−yO2 (NCA), and LiNixMnyCo1−x−yO2 (NMC) cells, varying the discharge rate, depth of discharge (DOD), and environment temperature. The capacity and discharge energy retention, as well as the round-trip efficiency, were compared. Even when operated within manufacturer specifications, the range of cycling conditions had a profound effect on cell degradation, with time to reach 80% capacity varying by thousands of hours and cycle counts among cells of each chemistry. The degradation of cells in this study was compared to that of similar cells in previous studies to identify universal trends and to provide a standard deviation for performance. All cycling files have been made publicly available at batteryarchive.org, a recently developed repository for visualization and comparison of battery data, to facilitate future experimental and modeling efforts.
Lithium-ion batteries can last many years but sometimes exhibit rapid, nonlinear degradation that severely limits battery lifetime. Here, we review prior work on “knees” in lithium-ion battery aging trajectories. We first review definitions for knees and three classes of “internal state trajectories” (termed snowball, hidden, and threshold trajectories) that can cause a knee. We then discuss six knee “pathways”, including lithium plating, electrode saturation, resistance growth, electrolyte and additive depletion, percolation-limited connectivity, and mechanical deformation, some of which have internal state trajectories with signals that are electrochemically undetectable. We also identify key design and usage sensitivities for knees. Finally, we discuss challenges and opportunities for knee modeling and prediction. Our findings illustrate the complexity and subtlety of lithium-ion battery degradation and can aid both academic and industrial efforts to improve battery lifetime.
Quinones are appealing targets as organic charge carriers for aqueous redox flow batteries (RFBs), but their utility continues to be constrained by limited stability under operating conditions. The present study evaluates the stability of a series of water‐soluble quinones, with redox potentials ranging from 605–885 mV versus NHE, under acidic aqueous conditions (1 m H2SO4). Four of the quinones are examined as cathodic electrolytes in an aqueous RFB, paired with anthraquinone‐2,7‐disulfonate as the anodic electrolyte. The RFB data complement other solution stability tests and show that the most stable electrolyte is a tetrasubstituted quinone containing four sulfonated thioether substituents. The results highlight the importance of substituting all C–H positions of the quinone in order to maximize the quinone stability and set the stage for design of improved organic electrolytes for aqueous RFBs.
Dissolved organic redox mediators enable transport of electrons and protons between an electrode and off-electrode heterogeneous catalysts. A new tetrasubstituted quinone has been developed that exhibits excellent solubility and stability under strongly acidic conditions and supports electrochemical reduction of O 2 in an off-electrode packed-bed reactor containing a heterogeneous Co-N/C catalyst. These components are integrated in a ''flow-cathode'' fuel cell system that achieves high current and power densities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.