Background Understanding the synergetic and antagonistic effects of combinations of drugs and toxins is vital for many applications, including treatment of multifactorial diseases and ecotoxicological monitoring. Synergy is usually assessed by comparing the response of drug combinations to a predicted non-interactive response from reference (null) models. Possible choices of null models are Loewe additivity, Bliss independence and the recently rediscovered Hand model. A different approach is taken by the MuSyC model, which directly fits a generalization of the Hill model to the data. All of these models, however, fit the dose–response relationship with a parametric model. Results We propose the Hand-GP model, a non-parametric model based on the combination of the Hand model with Gaussian processes. We introduce a new logarithmic squared exponential kernel for the Gaussian process which captures the logarithmic dependence of response on dose. From the monotherapeutic response and the Hand principle, we construct a null reference response and synergy is assessed from the difference between this null reference and the Gaussian process fitted response. Statistical significance of the difference is assessed from the confidence intervals of the Gaussian process fits. We evaluate performance of our model on a simulated data set from Greco, two simulated data sets of our own design and two benchmark data sets from Chou and Talalay. We compare the Hand-GP model to standard synergy models and show that our model performs better on these data sets. We also compare our model to the MuSyC model as an example of a recent method on these five data sets and on two-drug combination screens: Mott et al. anti-malarial screen and O’Neil et al. anti-cancer screen. We identify cases in which the HandGP model is preferred and cases in which the MuSyC model is preferred. Conclusion The Hand-GP model is a flexible model to capture synergy. Its non-parametric and probabilistic nature allows it to model a wide variety of response patterns.
Regulation of mRNA degradation is critical for a diverse array of cellular processes and developmental cell fate decisions. Many methods for determining mRNA half-lives rely on transcriptional inhibition or metabolic labelling. Here, we use a non-invasive method for estimating half-lives for hundreds of mRNAs in the early Drosophila embryo. This approach uses the intronic and exonic reads from a total RNA-seq time series and Gaussian process regression to model the dynamics of premature and mature mRNAs. We show how regulation of mRNA stability is used to establish a range of mature mRNA dynamics during embryogenesis, despite shared transcription profiles. Using single-molecule imaging, we provide evidence that, for the mRNAs tested, there is a correlation between short half-life and mRNA association with P-bodies. Moreover, we detect an enrichment of mRNA 3′ ends in P-bodies in the early embryo, consistent with 5′ to 3′ degradation occurring in P-bodies for at least a subset of mRNAs. We discuss our findings in relation to recently published data suggesting that the primary function of P-bodies in other biological contexts is mRNA storage.
We conduct a case study in which we empirically illustrate the performance of different classes of Bayesian inference methods to estimate stochastic volatility models. In particular, we consider how different particle filtering methods affect the variance of the estimated likelihood. We review and compare particle Markov Chain Monte Carlo (MCMC), RMHMC, fixed-form variational Bayes, and integrated nested Laplace approximation to estimate the posterior distribution of the parameters. Additionally, we conduct the review from the point of view of whether these methods are (1) easily adaptable to different model specifications; (2) adaptable to higher dimensions of the model in a straightforward way; (3) feasible in the multivariate case. We show that when using the stochastic volatility model for methods comparison, various data-generating processes have to be considered to make a fair assessment of the methods. Finally, we present a challenging specification of the multivariate stochastic volatility model, which is rarely used to illustrate the methods but constitutes an important practical application.
Count data appears in many research fields and exhibits certain features that make modeling difficult. Most popular approaches to modeling count data can be classified into observation and parameter-driven models. In this paper, we review two models from these classes: the log-linear multivariate conditional intensity model (also referred to as an integer-valued generalized autoregressive conditional heteroskedastic model) and the non-linear state-space model for count data. We compare these models in terms of forecasting performance on simulated data and two real datasets. In simulations, we consider the case of model misspecification. We find that both models have advantages in different situations, and we discuss the pros and cons of inference for both models in detail.
Background: Understanding the synergetic and antagonistic effects of combinations of drugs and toxins is vital for many applications, including treatment of multifactorial diseases and ecotoxicological monitoring. Synergy is usually assessed by comparing the response of drug combinations to a predicted non-interactive response from reference (null) models. Possible choices of null models are Loewe additivity, Bliss independence and the recently rediscovered Hand model. A different approach is taken by the MuSyC model, which directly fits a generalization of the Hill model to the data. All of these models, however, fit the dose-response relationship with a parametric model. Results: We propose the Hand-GP model, a non-parametric model based on the combination of the Hand model with Gaussian processes. We introduce a new logarithmic squared exponential kernel for the Gaussian process which captures the logarithmic dependence of response on dose. From the monotherapeutic response and the Hand principle, we construct a null reference response and synergy is assessed from the difference between this null reference and the Gaussian process fitted response. We evaluated performance of our model on a simulated data from Greco, two simulated data sets of our own design and two benchmark data sets from Chou and Talalay. We compare the Hand-GP model to standard synergy models and show that our model performs better than these standards. We also compare our model to the MuSyC model as example of a recent method which also fits a complete dose-response surface. Also in this case, the Hand-GP model performs better. Conclusion: The Hand-GP model is a flexible model to capture synergy. Its non-parametric natures allows it to model a wide variety of response patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.