The synthesis and characterization of a set of iron(III) complexes, viz. the mononuclear [Fe(L)3] (1) and [NHEt3][Fe(L)2(Cl)2] (2), the dinuclear methoxido-bridged [Fe(L)2(μ-OMe)]2.DMF.1.5MeOH (3), and the heteronuclear Fe(III)/Na(I) two-dimensional coordination polymer [Fe(N3)(μ-L)2(μ-O)1/2(Na)(μ-H2O)1/2]n (4), are reported. Reactions of 3-amino-2-pyrazinecarboxylic acid (HL) with iron(III) chloride under different reaction conditions were studied, and the obtained compounds were characterized by elemental analysis, Fourier Transform Infrared (FT-IR) spectroscopy, and X-ray single-crystal diffraction. Compound 1 is a neutral mononuclear complex, whereas 2 is mono-anionic with its charge being neutralized by triethylammonium cation. Compounds 3 and 4 display a di-methoxido-bridged dinuclear complex and a two-dimensional heterometallic Fe(III)/Na(I) polynuclear coordination polymer, respectively. Compounds 3 and 4 are the first examples of methoxido- and oxido-bridged iron(III) complexes, respectively, with 3-amino-2-pyrazinecarboxylate ligands. The electrochemical study of these compounds reveals a facile single-electron reversible Fe(III)-to-Fe(II) reduction at a positive potential of 0.08V vs. saturated calomel electrode (SCE), which is in line with their ability to act as efficient oxidants and heterogeneous catalysts for the solvent-free microwave-assisted peroxidative oxidation (with tert-butyl hydroperoxide) of cyclohexanol to cyclohexanone (almost quantitative yields after 1 h). Moreover, the catalysts are easily recovered and reused for five consecutive cycles, maintaining a high activity and selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.