Background Previous models of intracranial pressure (ICP) dynamics have not included flow of cerebral interstitial fluid (ISF) and changes in resistance to its flow when brain swelling occurs. We sought to develop a mathematical model that incorporates resistance to the bulk flow of cerebral ISF to better simulate the physiological changes that occur in pathologies in which brain swelling predominates and to assess the model’s ability to depict changes in cerebral physiology associated with cerebral edema. Methods We developed a lumped parameter model which includes a representation of cerebral ISF flow within brain tissue and its interactions with CSF flow and cerebral blood flow (CBF). The model is based on an electrical analog circuit with four intracranial compartments: the (1) subarachnoid space, (2) brain, (3) ventricles, (4) cerebral vasculature and the extracranial spinal thecal sac. We determined changes in pressure and volume within cerebral compartments at steady-state and simulated physiological perturbations including rapid injection of fluid into the intracranial space, hyperventilation, and hypoventilation. We simulated changes in resistance to flow or absorption of CSF and cerebral ISF to model hydrocephalus, cerebral edema, and to simulate disruption of the blood–brain barrier (BBB). Results The model accurately replicates well-accepted features of intracranial physiology including the exponential-like pressure–volume curve with rapid fluid injection, increased ICP pulse pressure with rising ICP, hydrocephalus resulting from increased resistance to CSF outflow, and changes associated with hyperventilation and hypoventilation. Importantly, modeling cerebral edema with increased resistance to cerebral ISF flow mimics key features of brain swelling including elevated ICP, increased brain volume, markedly reduced ventricular volume, and a contracted subarachnoid space. Similarly, a decreased resistance to flow of fluid across the BBB leads to an exponential-like rise in ICP and ventricular collapse. Conclusions The model accurately depicts the complex interactions that occur between pressure, volume, and resistances to flow in the different intracranial compartments under specific pathophysiological conditions. In modelling resistance to bulk flow of cerebral ISF, it may serve as a platform for improved modelling of cerebral edema and blood–brain barrier disruption that occur following brain injury.
Adipogenesis is a developmental process in which an elongated preadipocyte differentiates to a round adipocyte along with the accumulation of lipid droplets. In the present study, we focus on the study of cell motility at the single-cell level, toward expanding our knowledge regarding the cytoskeleton alteration during differentiation; since-cell motility is mediated by cytoskeletal components. We used the holographic-microscopy live imaging technique to evaluate, for the first time in the literature, differences between the motility of nondifferentiated preadipocytes and differentiated mature adipocytes in living cell cultures over time. We revealed that mean motility speed of preadipocytes was significantly higher (fourfold) than that of adipocytes, and that the movement of preadipocytes is less consistent and more extensive. Furthermore, we found that preadipocytes tend to migrate to farther distances, while mature adipocytes remain relatively close to their original location. The results presented here are in agreement with the fact that the cytoskeleton of adipocytes is altered during differentiation and similarly, points to the fact that the cell-sensing mechanisms are changing during differentiation. Our research paves the way to gain better insights of the differentiation process and its implications on larger scale systems in the context of obesity.
A mechanism of elevated intracranial pressure (ICP) in cerebral edema and its effects on cerebral blood flow (CBF) are presented in this paper. To study and demonstrate these effects, a mathematical model of intracranial hydrodynamics was developed. The model simulates the intracranial hydrodynamics and the changes that occur when cerebral edema predominates. To account for an edema pathology, the model includes resistances to cerebrospinal fluid (CSF) and interstitial fluid (ISF) flows within the parenchyma. The resistances change as the intercellular space becomes smaller due to swelling of brain cells. The model demonstrates the effect of changes in these resistances on ICP and venous resistance to blood flow by accounting for the key interactions between pressure, volume, and flow in the intracranial compartments in pathophysiological conditions. The model represents normal intracranial physiology as well as pathological conditions. Simulating cerebral edema with increased resistance to cerebral ISF flow resulted in elevated ICP, increased brain volume, markedly reduced ventricular volume, and decreased CBF as observed in the neurointensive care patients. The model indicates that in high ICP values, alternation of the arterial-arteriolar resistance to flow minimally affects CBF, while at low ICP they have a much greater effect on CBF. The model demonstrates and elucidates intracranial mechanisms related to elevated ICP.
Background Extensive investigation and modeling efforts have been dedicated to cerebral pressure autoregulation, which is primarily regulated by the cerebral arterioles ability to change their resistance and modulate cerebral blood flow (CBF). However, the mechanisms by which elevated intracranial pressure (ICP) leads to increased resistance to venous outflow have received less attention. We modified our previously described model of intracranial fluid interactions with a newly developed model of a partially collapsed blood vessel, which we termed the “Flow Control Zone” (FCZ). We sought to determine the degree to which ICP elevation causing venous compression at the FCZ becomes the main parameter limiting CBF. Methods The FCZ component was designed using non-linear functions representing resistance as a function of cross-sectional area and the pressure-volume relations of the vessel wall. We used our previously described swine model of cerebral edema with graduated elevation of ICP to calculate venous outflow resistance (VOR) and a newly defined parameter, the cerebral resistance index (CRI), which is the ratio between venous outflow resistance and cerebrovascular resistance. Results Model simulations of cerebral edema and increased ICP led to increased venous outflow resistance. There was a close similarity between model predictions of venous outflow resistance and experimental results in the swine model (cross correlation coefficient of 0.97). CRI was strongly correlated to ICP in the swine model (r2 = 0.77, p < 0.0001). A CRI value of 0.5 was associated with ICP values above clinically significant thresholds (23.7 mm Hg) in the swine model and a diminished the capacity of changes in arteriolar resistance to influence flow in the mathematical model. Conclusions Our results demonstrate the importance of venous compression at the FCZ in determining CBF when ICP is elevated. The cerebral resistance index may provide an indication of when compression of venous outflow becomes the dominant factor in limiting CBF following brain injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.