Here, on the basis of mimotope of small analytes, we demonstrated a new approach for development of sensitive and environmentally friendly immunoassay for toxic small analytes based on the peptide-MBP fusion protein. In this work, using mycotoxin fumonisin B1 (FB1) as a model hapten, phage displayed peptide (mimotope) that binds to the anti-FB1 antibody were selected by biopanning from a 12-mer peptide library. The DNA coding for the sequence of peptide was cloned into Escherichia coli ER2738 as a fusion protein with a maltose binding protein (MBP). The prepared peptide-MBP fusion protein are "clonable" homogeneous and FB1-free products and can be used as a coating antigen in the immunoassay. The half inhibition concentration of the quantitative immunoassay setup with fusion protein (F1-MBP and F15-MBP) was 2.15 ± 0.13 ng/mL and 1.26 ± 0.08 ng/mL, respectively. The fusion protein (F1-MBP) was also used to develop a qualitative Elispot assay with a cutoff level of 2.5 ng/mL, which was 10-fold more sensitive than that measured for chemically synthesized FB1-BSA conjugates based Elispot immunoassay. The peptide-MBP fusion protein not only can be prepared reproducibly as homogeneous and FB1-free products in a large-scale but also can contribute to the development of a highly sensitive immunoassay for analyzing FB1. Furthermore, the novel concept might provide potential applications to a general method for the immunoassay of various toxic small molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.