With the rapid growth of the e-commerce business scale, to meet customers' demand for efficient order processing, it is of great significance to establish an order management mechanism capable of responding quickly by accurately predicting product demand. This study used real e-commerce order demand data and established a nonlinear autoregressive neural network (NAR) model after pre-processing methods including down-sampling and data set partition to effectively forecast the demand of products in the next 13 weeks. Compared with the Prophet time series prediction framework, NAR had better generalization ability, and the prediction time was reduced by 18.54%. Finally, we summarized two methods' characteristics and gave instructions on applying our model in the real scene. After being deployed in the actual demand management, the trained artificial neural network provides a scientific reference for the data-driven e-commerce decision-making process and brings new advantages over other companies, achieving the rational allocation of resources.
Establishing a rapid-response mechanism to manage customer orders is very important in managing demand surges. In this study, combined with predicting order requests, we established a multiobjective optimization model to solve the warehouse space allocation problem. First, we developed a model based on the NAR neural network to predict order requests. Subsequently, we used the improved NSGA-III based on good point set theory to construct a multiobjective optimization model to minimize resource loss, maximize efficiency in goods selection, and maximize goods accumulation. The following three modes were tested to allocate warehouse storage space: random, ABC, and prediction-oriented. Finally, using actual order data, we conducted a comparative analysis of the three modes regarding their efficiency in goods selection. The method proposed by this study improved goods selection efficiency by a sizable margin (23.8%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.