Spaceborne synthetic aperture radar (SAR) can provide ground area monitoring with large coverage. However, achieving a wide observation scope comes at the cost of resolution reduction owing to the trade-off between these parameters in conventional SAR. In low-resolution imaging, the moving target appears unresolved, weakly scattered, and slow moving in the image sequence, which can be generated by the subaperture technique. This article proposes a novel moving target detection method. First, interferometric phase statistics are combined with the generalized likelihood ratio test detector. A pixel tracking strategy is further exploited to determine whether a motion signal is present. These methods rely on the approximation of both clutter and noise statistics using Gaussian distributions in a low-resolution scenario. In addition, the motion signals are imaged with a subpixel offset. The proposed method is primarily validated using four real image sequences from TerraSAR-X data, which represent two types of homogeneous areas. The results reveal that moving targets can be detected in nearby areas using this strategy. The method is compared with the stack averaged coherence change detection and particle-filter-based tracking strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.