Major depression and anxiety disorders are a social and economic burden worldwide. Serotonergic signaling has been implicated in the pathophysiology of these disorders and thus has been a crucial target for pharmacotherapy. However, the precise mechanisms underlying these disorders are still unclear. Here, we used species-optimized lentiviral vectors that were capable of efficient and specific transduction of serotonergic neurons in mice and rats for elucidation of serotonergic roles in anxiety-like behaviors and active coping behavior in both species. Immunohistochemical analyses revealed that lentiviral vectors with an upstream sequence of tryptophan hydroxylase 2 gene efficiently transduced serotonergic neurons with a specificity of approximately 95% in both mice and rats. Electrophysiological recordings showed that these lentiviral vectors induced sufficient expression of optogenetic tools for precise control of serotonergic neurons. Using these vectors, we demonstrate that acute activation of serotonergic neurons in the dorsal raphe nucleus increases active coping with inescapable stress in rats and mice in a time-locked manner, and that acute inhibition of these neurons increases anxiety-like behaviors specifically in rats. These findings further our understanding of the pathophysiological role of dorsal raphe serotonergic neurons in different species and the role of these neurons as therapeutic targets in major depression and anxiety disorders.
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder characterized by the repeated rise of concerns (obsessions) and repetitive unwanted behavior (compulsions). Although selective serotonin reuptake inhibitors (SSRIs) is the first-choice drug, response rates to SSRI treatment vary between symptom dimensions. In this study, to find a therapeutic target for SSRI-resilient OCD symptoms, we evaluated treatment responses of quinpirole (QNP) sensitization-induced OCD-related behaviors in mice. SSRI administration rescued the cognitive inflexibility, as well as hyperactivity in the lateral orbitofrontal cortex (lOFC), while no improvement was observed for the repetitive behavior. D 2 receptor signaling in the central striatum (CS) was involved in SSRI-resistant repetitive behavior. An adenosine A 2A antagonist, istradefylline, which rescued abnormal excitatory synaptic function in the CS indirect pathway medium spiny neurons (MSNs) of sensitized mice, alleviated both of the QNP-induced abnormal behaviors with only short-term administration. These results provide a new insight into therapeutic strategies for SSRI-resistant OCD symptoms and indicate the potential of A 2A antagonists as a rapid-acting anti-OCD drug.
Background: Reward processing is fundamental for animals to survive and reproduce. Many studies have shown the importance of dorsal raphe nucleus (DRN) serotonin (5-HT) neurons in this process, but the strongly correlative link between the activity of DRN 5-HT neurons and rewarding/aversive potency is under debate. Our primary objective was to reveal this link using two different strategies to transduce DRN 5-HT neurons. Methods: For transduction of 5-HT neurons in wildtype mice, adeno-associated virus (AAV) bearing the mouse tryptophan hydroxylase 2 (TPH2) gene promoter was used. For transduction in Tph2-tTA transgenic mice, AAVs bearing the tTA-dependent TetO enhancer were used. To manipulate the activity of 5-HT neurons, optogenetic actuators (CheRiff, eArchT) were expressed by AAVs. For measurement of rewarding/aversive potency, we performed a nose-poke self-stimulation test and conditioned place preference (CPP) test. Results: We found that stimulation of DRN 5-HT neurons and their projections to the ventral tegmental area (VTA) increased the number of nose-pokes in self-stimulation test and CPP scores in both targeting methods. Concomitantly, CPP scores were decreased by inhibition of DRN 5-HT neurons and their projections to VTA. Conclusion: Our findings indicate that the activity of DRN 5-HT neurons projecting to the VTA is a key modulator of balance between reward and aversion.
BackgroundKetamine rapidly elicits antidepressive effects in humans and mice in which serotonergic activity is involved. Although α4β2 nicotinic acetylcholine receptor (α4β2 nAChR) in the dorsal raphe nucleus plays a key role in the ketamine-induced prefrontal serotonin release, the source of cholinergic afferents, and its role is unclear.MethodsPrefrontal serotonin levels after ketamine injection were measured by microdialysis in rats. Electrolytic lesion of pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus was made with constant direct current.ResultsBilateral lesion of the pedunculopontine tegmental nucleus, but not laterodorsal tegmental nucleus, attenuated prefrontal serotonin release induced by systemic ketamine. Intra-pedunculopontine tegmental nucleus, but not intra-laterodorsal tegmental nucleus ketamine perfusion, increased prefrontal serotonin release. This increase was attenuated by intra-dorsal raphe nucleus injection of dihydro-β-erythroidine, an α4β2 nAChR antagonist, or NBQX, an AMPA receptor antagonist.ConclusionsThese results suggest the ketamine-induced serotonin release in medial prefrontal cortex is mediated by cholinergic neurons projecting from pedunculopontine tegmental nucleus to dorsal raphe nucleus via α4β2 nAChRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.