To survive in the iron-devoid environment of their host, pathogenic bacteria have devised multifarious cunning tactics such as evolving intricate heme transport systems to pirate extracellular heme. Yet, the potential of heme transport systems as antimicrobial targets has not been explored. Herein we developed a strategy to deliver antimicrobials by exploiting the extracellular heme acquisition system protein A (HasA) of Pseudomonas aeruginosa. We demonstrated that, analogous to heme uptake, HasA can specifically traffic an antimicrobial, gallium phthalocyanine (GaPc), into the intracellular space of P. aeruginosa via the interaction of HasA with its outer membrane receptor HasR. HasA enables water-insoluble GaPc to be mistakenly acquired by P. aeruginosa, permitting its sterilization (>99.99%) by irradiation with near-infrared (NIR) light, irrespective of antibiotic resistance. Our findings substantiate that bacterial heme uptake via protein−protein recognition is an attractive target for antimicrobials, enabling specific and effective sterilization.
Iron(III)-5,15-diphenylporphyrin and several derivatives were accommodated by HasA, a heme acquisition protein secreted by Pseudomonas aeruginosa, despite possessing bulky substituents at the meso position of the porphyrin. Crystal structure analysis revealed that the two phenyl groups at the meso positions of porphyrin extend outside HasA. It was shown that the growth of P. aeruginosa was inhibited in the presence of HasA coordinating the synthetic porphyrins under iron-limiting conditions, and that the structure of the synthetic porphyrins greatly affects the inhibition efficiency.
We report the enhanced cis- and enantioselective cyclopropanation of styrene catalysed by cytochrome P450BM3 in the presence of dummy substrates, i.e. decoy molecules. Molecular dynamics simulations underpin the experimental data,...
Tetraphenylporphyrin (TPP) is a symmetrically substituted synthetic porphyrin whose properties can be readily modified, providing it with significant advantages over naturally occurring porphyrins. Herein, we report the first example of a stable complex between a native biomolecule, the haemoprotein HasA, and TPP as well as its derivatives. The X‐ray crystal structures of nine different HasA‐TPP complexes were solved at high resolutions. HasA capturing TPP derivatives was also demonstrated to inhibit growth of the opportunistic pathogen Pseudomonas aeruginosa. Mutant variants of HasA binding FeTPP were shown to possess a different mode of coordination, permitting the cyclopropanation of styrene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.