Macrophage polarization is implicated in the inflammation in obesity. The aim of the present study was to examine the anti-inflammatory activities of botanical triterpene celastrol against diet-induced obesity. We treated diet-induced obese C57BL/6N male mice with celastrol (5, 7.5 mg/kg/d) for 3 weeks, and investigated macrophage M1/M2 polarization in adipose and hepatic tissues. Celastrol reduced fat accumulation and ameliorated glucose tolerance and insulin sensitivity. Celastrol down-regulated the mRNA levels of macrophage M1 biomarkers (e.g., IL-6, IL-1β, TNF-α, iNOS) in cell culture and in mice. The underlying mechanisms were investigated in murine macrophage RAW264.7 cells. Our results demonstrated that celastrol might control macrophage polarization through modulating the cross-talk between the following three mechanisms: 1) suppressing LPS-induced activation of MAP kinases (e.g., ERK1/2, p38, JNK) in a concentration dependent manner; 2) attenuating LPS-induced nuclear translocation of NF-κB p65 subunit in a time dependent manner; 3) activating Nrf2 and subsequently inducing HO-1 expression. HO-1 inhibitor SnPP diminished the inhibitory effects of celastrol on the activation of NF-κB pathway and the pro-inflammatory M1 macrophage polarization. Taken together, celastrol exhibited anti-obesity effects via suppressing pro-inflammatory M1 macrophage polarization. Thus, our results provide new evidence for the potential of celastrol in the treatment of obesity.
Summary Root anatomy plays important roles in the control of leaf water relations. However, few studies have evaluated whether and how anatomical traits of absorptive roots influence leaf physiology of herbaceous species in a temperate grassland. We measured absorptive root anatomical traits and leaf physiological traits of 15 herbaceous species in a temperate steppe and monitored their responses to increased precipitation in a field stimulating experiment. Root anatomical and leaf physiological traits differed among monocotyledonous grasses, monocotyledonous liliaceous species and dicotyledonous forbs. The species with higher stele: root diameter, lower root diameter and cortex thickness exhibited higher transpiration rates and stomatal conductance, but lower intrinsic water‐use efficiency. Increased precipitation enhanced transpiration and stomatal conductance of forbs and lilies, but it enhanced photosynthesis in lilies exclusively. The sensitive response of lilies to precipitation may be related to their large root diameter and cortex thickness. In summary, we observed distinct differences in anatomical traits of absorptive roots among plant groups in temperate steppes. These differences drove variations in leaf physiological traits and their diverse responses to precipitation change. These findings highlight the important roles of root anatomical traits in driving leaf‐level physiological processes in temperate grasslands.
Aims-SIRT1 exerts potent activity against cellular senescence and vascular ageing. By decreasing LKB1 protein levels, it promotes the survival and regeneration of endothelial cells. The present study aims to investigate the molecular mechanisms underlying SIRT1-mediated LKB1 degradation for the prevention of vascular ageing.Methods and Results-Co-immunoprecipitation assay demonstrated that SIRT1, via its amino-terminus, binds to the DOC domain of HERC2 [HECT and RLD domain containing E3 ubiquitin protein ligase 2], which then ubiquitinates LKB1 in the nuclear compartment of endothelial cells. Site-directed mutagenesis revealed that acetylation at lysine (K) 64 of LKB1 triggers the formation of SIRT1/HERC2/LKB1 protein complex and subsequent proteasomal degradation. In vitro cellular studies suggested that accumulation of acetylated LKB1 in the nucleus leads to endothelial activation, in turn stimulating the proliferation of vascular smooth muscle cells and the production of extracellular matrix proteins. Chromatin immunoprecipitation quantitative PCR confirmed that acetylated LKB1 interacts with and activates TGFβ1 promoter, which is inhibited by SIRT1. Knocking down either SIRT1 or HERC2 results in an increased association of LKB1 with the positive regulatory elements of TGFβ1 promoter. In mice without endothelial nitric oxide synthase, selective overexpression of human SIRT1 in endothelium prevents hypertension and age-related adverse arterial remodeling. Lentiviral-mediated knockdown of HERC2 abolishes the beneficial effects of endothelial SIRT1 on both arterial remodeling and arterial blood pressure control.Conclusion-By downregulating acetylated LKB1 protein via HERC2, SIRT1 fine-tunes the crosstalk between endothelial and vascular smooth muscle cells to prevent adverse arterial remodeling and maintain vascular homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.